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Author’s Preface to the Second Edition

For a working mathematician, it is much more important to know what
questions are not answered so far and failed to be solved by the methods already
available, than all lists of numbers already multiplied, and than the erudition in
the ocean of literature that has been created by previous generations of researchers
over twenty thousand years.

To tell the students about the most (in the author’s opinion) interesting
unsolved problems—this is the purpose of the present book which is composed
of problems formulated at seminars in Moscow and Paris starting from 1958. The
main body of the book is formed by comments of my former students about the cur-
rent progress in the problems solution (featuring bibliography inspired by them).

The observed half-life of the problem (of its more or less complete solu-
tion) is about seven years on average. Thus, many problems are still open, and
even those that are mainly solved keep stimulating new research appearing every
year in journals of various countries of the World.

The invariable peculiarity of these problems was that Mathematics was
considered there not as a game with deductive reasonings and symbols, but as a
part of natural science (especially of Physics), that is, as an experimental science
(which is distinguished among other experimental sciences primarily by the low
costs of its experiments).

Problems of binary type admitting a “yes—no” answer (like the Fermat
problem) are of little value here. One should rather speak of wide-scope programs
of explorations of new mathematical (and not only mathematical) continents,
where reaching new peaks reveals new perspectives, and where a preconceived
formulation of problems would substantially restrict the field of investigations that
have been caused by these perspectives. It is not sufficient to know whether there
is a river beyond the mountain; it does remain to cross this river! Evolution is
more important than achieving records.
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In the raw cases where the imperatives of simplicity and beauty contradict-
ed each other, the author usually has chosen the latter, having in mind that it was
the beauty rather than the utility of science (including Mathematics) that historical-
ly played the role of the main engine leading researchers to the discoveries proved
to be most useful nowadays (such as the conic sections for space navigation, or the
Maxwell equations for television and radar).

I would wish the reader not to be held back by the fact that such appli-
cations are not evident at the beginning: if a result is truly beautiful then it will
certainly be of use in due course!

V.I Arnold
Moscow, 2003



Le monde est soutenu
par les enfants
qui étudient.

Roger Peyrefitte
Les juifs. Paris: Flammarion, 1965, p. 281

Author’s Preface to the First Edition

Moscow has a long-standing fame for its mathematical seminars. At the
beginning of each academic term I formulate problems, usually a dozen or two.
The future analysis shows that the average half-life of a problem (after which it
would be more or less solved) is about seven years.

Poincaré used to say that precise formulation, as a question admitting a
“yes or no” answetr, is possible only for problems of little interest. Questions that
are really interesting would not be settled this way: they yield gradual forward
motion and permanent development.

In Poincaré’s opinion, the main essence of any problem is to understand
what is definitive in its formulation, and what can be varied (like boundary condi-
tions in an elliptic problem).

I. G. Petrovskii, who was one of my teachers in Mathematics, taught me
that the most important thing that a student should learn from his supervisor is that
some guestion is still open. Further choice of the problem from the set of unsolved
ones is made by the student himself. To select a problem for him is the same as to
choose a bride for one’s son.

Mainly, I did not write my problems down, especially in the sixties; there-
fore most of them are probably lost. Some problems are included in my papers and
books. Sometimes I reconstructed my problems to the seminar from conversations

with my colleagues and friends. I hope that below the authors are quoted in most
of such situations.

There are two principal ways to formulate mathematical assertions (prob-
lems, conjectures, theorems, ...): Russian and French. The Russian way is to
choose the most simple and specific case (so that nobody could simplify the for-
mulation preserving the main point). The French way is to generalize the statement
as far as nobody could generalize it further.
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I assume that this division more or less coincides with the division of peo-
ple into the right-hemisphere resolvers of posed problems, and the left-hemisphere
authors of research programs.

Once, when I was a younger student, I asked R. L. Dobrushin (who was a
graduate student) a question. “A fool can ask so many questions that a hundred of
intellectuals could not answer them,” Dobrushin said. As for me, questions should
nevertheless be published. By the way, it turned out that the question that I had
asked Dobrushin that time—whether the perimeter of a rectangle can increase as
the result of a sequence of foldings and unfoldings—remains open and is treated
as folklore (although, seems to me, I published it, say, 40 years ago).

Ya. B. Zeldovich thought that posing a problem is a much finer art than its
solution. “Once you formulate a precise question, he said, there already appears
a mathematician able to solve it. In fact, mathematicians are like flies, fit to walk
on the ceiling!”

This had led him to a well-known struggle, where Pontryagin and Logunov
tried to criticize the mathematical rigor of his theories. It resulted in the following
phrase in Pontryagin’s book: “Some physicists think that one can make a correct
use of the mathematical analysis without full knowledge of its foundation. And I
do agree with them.”

Zeldovich was offended by this phrase. “Why hasn’t he named me?”
Yakov Borisovich said to me then.

I am deeply indebted to a large number of my former and present students
who have written this book. I tried to quote them appropriately.

Mathematical training in Moscow usually begins before the school age.
Here is a couple of excercises (children 4-5 years old would have solved them in
half an hour):

1) From a barrel of wine, a spoon was poured into a cup of tea, and then
the same spoon of the obtained (nonhomogeneous!) mixture was poured from the
cup back into the barrel. Where did the amount of the foreign beverage become
greater?

2) On a chess board, two opposite angle squares (al, h8) are cut off. Can
the 62 remaining squares be covered by 31 domino pieces (without overlaps), every
piece covering two (neighboring) squares?

Leibnitz thought that a curve intersects its curvature circle at four coinci-
dent points and that d(ab) = (da)(db).

Hilbert argued that a really interesting work in mathematics rarely happens
to be correct. For example, in his survey of relativity theory, he affirmed that
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“simultaneity exists by itself.” His description of geometry of numbers from the
article dedicated to Minkowski is beyond any critics at all.

A. Weil wrote that his famous dissertation had been read only by two op-
ponents; but even they understood too little because of their lack of proficiency
(the work was erroneous). And this is yet one of the most important works of our
century (1926-1928) in number theory.

Errors committed by Poincaré himself are too widely known to be recalled
here: he confused homology with homotopy and missed the 3-manifold of dodec-
ahedral lens type which is now named after him. Many questions in the theory
of differential equations, dynamical systems, and celestial mechanics “solved” by
him still remain open.

Descartes wrote to Huygens: “If I see any vacuum in Nature, it is only in
Pascal’s head.”

Mathematician N refused to correct misprints while re-editing his book, in
order not to rob the reader of pleasure in finding errors.

It seems, Napoleon said that a person, who is unable to think, cannot also
be taught anything.

I hope that the present book will teach at least anybody to think (by the
above problems 1 and 2 though).

V.1 Arnold
Garches (France), 1999



Editorial to the Second Edition

You are looking at the second edition of the title “Arnold’s Problems,”
which is now in English. Its size has noticeably grown compared with the first Rus-
sian edition of 2000—by more than a one third; for new problems and comments
have appeared, and some old comments have been supplemented. The number of
authors of comments has doubled, from 29 to 59.

The format of the comments has also been modified. The name of the
comment’s author is now shown at the beginning of the comment (beside the prob-
lem’s number), no longer at its end. If there are several comments to a problem,
then the problem number in every comment is preceded by a symbol indicating if
this comment is the first one (V), an intermediate one (@) or the last one (A). Each

comment is opened by a notation indicating its nature: the letter .\. means that

the comment is historic, and .’ means that the comment is devoted to the results
of the research on the problem.

Just as in the first (Russian) edition of this book, twin problems appear here
(see the explanation on page XIII).

For the problems appearing in the first edition, the numbers have been pre-
served. In cases when problems of the preceding years forgotten in the former
edition have since been discovered, they are appended at the end of the list of
problems of the corresponding year.

We also point out a feature of the bibliography. If an article was published
in a journal in Russian that is translated into English on a regular basis (cover-
to-cover), then its bibliographical description includes only the translation of the
article (since the original is easily found in this case). In the cases when it might
be difficult to find respectively the English translation or the Russian original of an
article, the references to both of them are provided.




XI1I Editorial to the Second Edition

We acknowledge our pleasant duty to thank Professors M. S. P. Eastham,
A. G. Khovanskii, L. P. Kotova, M. B. Sevryuk, and O. V. Sipacheva who have con-
tributed to this edition by improving the English text.

All formulations of the problems and all the comments have been checked
by Vladimir Igorevich Amold. Some comments, in comparison with the first edi-
tion, have been reduced by excluding the descriptions of unpublished and unver-
ified results. Unfortunately, not all potential authors of comments accepted our
suggestion to write comments to the problems they had studied. Now we keep
on inviting all the colleagues to participate in commenting Arnold’s Problems.
For more information, see the Internet site http://www.phasis.ru.

In order to make the author’s famous Russian original edition accessible to
readers worldwide, PHASIS and Springer-Verlag have collaborated in the publica-
tion of this enlarged and updated English edition using the know-how, experience
and abilities of both publishers.

V. Philippov
M. Peters A. Yakivchik

Heidelberg, 2004 Moscow, 2004



To ask the right question
is harder than to answer it.

Georg Cantor

Editorial to the First Edition

The present title represents the problems that have been posed by Vladimir
Igorevich Amold during a period of over 40 years.

This is principally a fairly complete list of problems presented by him at
his seminar on the theory of singularities of differentiable mappings, twice a year
at the beginning of each academic term. (This famous seminar has been working
at the Department of Mechanics and Mathematics of Moscow State University for
over 30 years and deserves the title of one of the leading World centers of mathe-
matical science.) In addition, there are problems published by Vladimir Igorevich
in his numerous papers and books. It is clear, however, that not all Arnold’s prob-
lems have been collected so far, and we would be grateful to those readers who
will report to us any problems not appearing in the present volume.

The book consists of two parts. The first part comprises the formulations
of the problems; brief explanations that are italicized there are due to the author.
The second part is a collection of comments including a survey of results on the
given problem or, in some cases, a historic reference. Almost all the comments are
signed by their authors (which are mostly the former students of Vladimir Igore-
vich); the brief unsigned comments belong either to the author or to the editor. In
a few cases, the authors include a description of their unpublished and unverified
results in their comments, sometimes even those on classical problems; such as-
sertions should be regarded as conjectures. The bibliography to all comments has
been carefully checked by the editor.

For the sake of historic certainty, we preserve the so-called twin problems,
i. e., the problems that date back to different years but are almost identical in their
essence. Only one of these problems (and not always the earliest) is commented
on in such a case, the other twin problems being supplied with a reference: “See
the comment to problem (number).” Such references are used in some other cases
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when information from the comment to one problem applies to another problem
as well.

All mathematical notations appearing in the book are commonly used.
However, the notations for spheres and balls of various dimensions must be clar-
ified. Non-parallelizable n-dimensional spheres (i.e., for n ¢ {0,1,3,7}) are al-
ways denoted by S§*. The spheres of dimensions n = 0,1, 3,7 are generally denot-
ed by S”, but in some exceptional cases (either pointed out by V.1. Amold or, for
example, in dealing with the bouquet of spheres S? V §!) also by §". The closed
ball of dimension n > 3 is denoted by B". For the two-dimensional ball (disk)
the notation D? is mainly used. Finally, the one-dimensional ball (line segment)
{x e R |a<x<b}is denoted by [a;b].

We hope the reader appreciates the tough work that we had to perform
while preparing this title, and we would like to thank all participants in this project,
especially the authors of comments. We are not entirely satisfied by the quality of
our own efforts, but our main desire was the early appearance of the book. Many
problems have been left without comments; with several exceptions this means
only that nobody has undertaken the task to write such a comment so far.

At the same time, we believe that the work on this project is still only at
its first steps, and we would be indebted to everybody who will contribute to the
next edition of this title with remarks, suggestions, corrections, new comments Or
historic references.

V. B. Philippov
M. B. Sevryuk

Moscow, 1999
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Et a quoi bien exécuter des projets,
puisque le projet est en lui-méme
une jouissance suffisante?

Charles Baudelaire

Le spleen de Paris, XXIV (Les projets)

The Problems



2 The Problems 1956-1

1956-1. “The rumpled dollar problem’: is it possible to increase the perimeter of
a rectangle by a sequence of foldings and unfoldings?

s
A ‘}&\W«/ﬁ

1958-1. Let us consider a partition of the closed interval [0; 1] into three inter-
vals A1, Ay, A3 and rearrange them in the order Az, Ay, A;. Explore the resulting
dynamical system [0; 1] — [0; 1]: is it true that the mixing rate and similar ergod-
ic characteristics are the same for almost all lengths (A;,A;,As) of the partition
intervals?

An analogous question may be asked for » intervals and for arbitrary per-
mutations as well (changing the orientation of some intervals also being allowed).

1958-2. Let all four faces of a tetrahedron have equal areas. Prove that the lengths
of opposite edges are equal (and all faces are congruent!). The idea is quite simple:
cut along three edges from a vertex and develop.

1958-3. Find a multidimensional version of the Hilbert conjecture on the number
of limit cycles of a polynomial vector field. For instance, one is interested in the
number of integral curves connecting two algebraic or invariant manifolds and
sufficiently “monotone.”

1959-1. Let the biholomorphic mapping z + z+a -+ bsinz mod 2% of the circle
Im z = 0 onto itself be not conjugate analytically to a rotation but have an irrational
rotation number. Is it true that in any neighborhood of the circle, there is a periodic
orbit?
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1963-1. Is there true instability in multidimensional problems of perturbation the-
ory where the invariant tori do not divide the phase space?

1963-2. Prove the presence of nondegenerate hyperbolic points (and separatrix
splitting) in any neighborhood of an elliptic fixed point O of a generic analytic
area-preserving mapping (R2,0) «.

1963-3. Are there bounded motions filling up a set of positive measure in the
three (and »n) body problem, for any values of the masses and for the distances
comparable with each other? Does there exist a critical value of the perturbation
parameter | at which the invariant torus with given Diophantine frequency vector
breaks up?

1963-4. Let T be an orientation-preserving analytic diffeomorphism of a circle
onto itself with Diophantine rotation number ®. Can one always turn 7 into the ro-
tation T through the angle 27t via an analytic change of variables S: STS™! = Ty?

1963-5. Consider a system of linear differential equations with quasi-periodic
coefficients

g=0, i=A(qQx, qeT'=R/2rnZF xeR"

where ® € RF is a constant vector with Diophantine components while A : T* —
gl(n,R) is an analytic function. Is such a system always reducible fork > 1, n > 1?

1963-6. Let I be a (generally noncommutative) group with finitely many gener-
ators ay, . ..,a;. By a dynamical system with the “time” I" we shall mean an action
of the group I' on a space with measure €2 by measure-preserving transformations
Ay (Y €T). For such a system, time averages may be defined as follows. Let us
consider the set I';, of elements of I that can be obtained by » (but not less than n)
multiplications from al,a'l_l, ...,a5,a; ", and let N (n) be the number of such ele-

ments. Then define the “time average” f,, of a function f as

0 = 57 T fp), xeo
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Now let Q be a homogeneous space, with a transitive action of a compact Lie
group G on it; and let the transformations Ay (y € I') belong to G.

Are the ergodic theorems of Birkhoff and von Neumann true for such dy-
namical systems with a noncommutative time?

The next three problems also concern dynamical systems (Q, G,I") with a
noncommutative time .

1963-7. For some groups I" the sequence of points Ayx is uniformly distributed
in its closure, if the closure is connected. In other words, the time averages f,,(x)
of a continuous function converge to the space average over the closure m of a
trajectory Ayx (Y€ I):

lim f,(x) = L /__f (v) duly).

n—eo mes [(x) JT(x)

Examples are given by the free group I with two generators a, » and the group I'
with generators a, b, ¢ and the relation abc = e.
Does this result extend to arbitrary groups I" with finitely many generators?

1963-8. Does the result mentioned in the previous problem extend to the non-
compact case? (For instance, let Q be the Euclidean plane or the Lobachevskian
plane.)

1963-9. What is the generalization of the result mentioned in problem 1963-7 to
the case where a Lie group, e. g., the isometry group of the Lobachevskian plane,
is considered as time?

1963-10. In what cases is the monodromy group of the system dx = [A(z) dz]x
of linear differential equations on a Riemann surface M bounded? Here z € M,
x € C", and A(z) dz is a matrix of differentials which are analytic in z except for a
finite set of singular points.

1963-11. Consider a system of linear differential equations dx/dz = A(z)x, where
7 € CP!, x € C", and A is a matrix which depends on z analytically, except for three
singular points zj, z2, z3 on the Riemann sphere CP!. Denote CP'\ {z1,22,23}
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by Z. If the monodromy group of the system dx/dz = A(z)x is bounded, then this
system has a single-valued first integral (B(z)x,X) = const, where B(z) is a positive
definite self-adjoint matrix, single-valued for z € Z.

Is it true that the surface depicting the solutions of this system in the
(2n + 1)-dimensional manifold M.: (Bx,X) = c, is uniformly distributed with re-
spect to the following metric: on Z, we introduce a metric of constant negative
curvature, and on C"(z) the metric is defined by the scalar product (B(z)x,y)?

1963-12. The system dx/dz = A(z)x from the previous problem can be consid-
ered as a dynamical system where the role of the time is played by the universal
covering of Z, i. e., by the Lobachevskian plane. But an ordinary dynamical sys-
tem with continuous time can also be related to this system. In order to do so,
consider a new phase space whose points are the points (z,x) € M, together with
the direction & of a vector tangent to Z at z. The motion is defined in the following
way: the point z is moving uniformly along the geodesic in the direction of &, and
x over z is moving according to the equations dx/dz = A(z)x. The metric and the
invariant measure are defined as in the previous problem.

This construction allows us to “multiply” the flow defined on a manifold
by a group of automorphisms (which is a representation of the fundamental group
of the manifold). The problem is in the study of the resulting “products.”

1965-1. LetA: Q — Q be a globally canonical homeomorphism of the 2n-dimen-
sional toroidal annulus © = T" x B", where T" = R"/2nZ" denotes the n-torus
while B" C R" is a domain in R"” homeomorphic to a closed n-dimensional ball.
Let po be an interior point of B", and T C Q be the torus T" x {po}. Do T and AT
always intersect at not less than n+4 1 (geometrically distinct) points?

In this problem and the subsequent two problems, a mapping A : Q — Q,
where Q = T" x B",

T ={q=(q1,...,qn) modd2n}, B*CR"={p=(p1,...,pn)},

1s said to be globally canonical if it 1s homotopic to the identity transformation and

jgpdq= pdq
Y Ay
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(pdgq = pr1dq1+ -+ pndg,) for any closed curve Y C Q (not necessarily homol-
ogous to zero).

1965-2. LetA: Q — Q be a globally canonical diffeomorphism of the 2n-dimen-
sional toroidal annulus Q = T" x B", where T" = R"/2#nZ" denotes the n-torus
while B" C R" is a domain in R" homeomorphic to a closed n-dimensional ball.
Let po be an interior point of the domain B" and let T C Q, the torus T" x {po}.
Do T and AT always intersect at not less than 2" points (counting multiplicities)?

1965-3. Let A: Q — € be a globally canonical diffeomorphism of the 2n-dimen-
sional toroidal annulus Q = B" x T", where B" C R”" is a domain in R” homeo-
morphic to a closed n-dimensional ball while T" = R" /2xZ" denotes the n-torus.
Suppose that, for any g € T", the spheres $"~!(g) = 0B" x {gq} and AS""!(g) are
linked in dB" x R" where R" — T" is the universal covering. Is it true that, in this
set-up, the diffeomorphism A possesses at least 2" fixed points in the annulus Q
(counting multiplicities)?

1966-1. What is the connection between the /-component /(¢) of the solution of
the system

do/dt = o(I)+ef(1,¢), dI/dt=¢eF(I,0)
(¢ € TF, I € R}, 0 < € < 1) and the solution J(¢) of the “evolution equation”
1
(2m)* Jre

with the same initial data on the interval 0 <t < 1/€?

dJ/dt =¢eF(J), F(J):= (J,0)do

1966-2. What is the behavior of orbits in the complement to the union of the in-
variant tori of a nearly integrable Hamiltonian system? Is it true, in particular, that
these orbits exhibit no evolution in the s-th approximation, i.e., [I(t) —J(z)] < 1
for 0 < ¢t < 1/€°? Here I denotes the vector of the action variables, J(t) is the solu-
tion of the s-th order “evolution equation” with the initial conditions J(0) = 1{0),
while 0 < € < 1 1s the perturbation parameter.
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1966-3. Prove or disprove the following conjecture. Consider a nearly integrable
Hamiltonian system with k£ > 3 degrees of freedom and with the Hamilton function
Hy(I) +eH (I,¢), where (I,¢) are the action—angle variables. Then “generically”
for every pair of neighborhoods of the tori I =1', I = I" with Hy(I') = Hy(I"),
there is an orbit passing through both neighborhoods provided that € is sufficiently
small.

1966-4. Let a diffeomorphism A: g — g+ f(q) of the torus T? = {(q1,q2)
modd 27t} preserve the measure dq; A dg; and the center-of-mass:

# . fa) dardaz = .

Prove that A has at least 4 fixed points counting multiplicities and at least 3 geo-
metrically distinct fixed points.

1966-5. Let Q = T* x B* (T* = {g modd2n}, B* = {p € R¥, |p| < 1}) be
the toroidal annulus equipped with the canonical structure ®' = pdg, and let
A Q — Q be a canonical diffeomorphism homotopic to the identity transforma-
tion and such that each sphere {g} x 0B is linked with its image on the covering
of the boundary T* x 0B*. Then A possesses at least 2% fixed points counting
multiplicities and at least k + 1 geometrically distinct fixed points.

1966-6. Investigate the ergodic properties of motions in the complement of the
union of the invariant tori of a nearly integrable Hamiltonian system. In particular,
1s the entropy of such a system positive?

1968-1. What collections of numbers By, By, B, ... can be realized as col-
lections of Morse numbers By = My, By = My — Mgy, By = My, — My +M,, ...
for a polynomial in n variables of degree d?

1968-2. What topological characteristics of a real (complex) polynomial are com-
putable from the Newton diagram (and the signs of the coefficients)?
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1969-1. An embedding of a torus into R’ is given. Can it have nontrivial (at least
infinitesimal?) isometric deformations? The question is connected with small de-
nominators, taking into account the dynamical system defined by the asymptotic
lines on the parabolic curve. This system itself is worth examining.

1969-2. Given a function in the plane (a germ at 0), is it possible to find a func-
tion, that is smoothly equivalent to the given function, and is the Gaussian curva-
ture function of (a germ of) a surface z = f(x,y) in R>? Can merely the original
function in the plane be itself realized in this form? The answer may depend on
the singularity at Q. for example, it may happen that finite multiplicity, |1 < o,
is required.

1970-1. Construct versal unfoldings of endomorphisms (of vector spaces and
groups).

1970-2. Is the problem of distinguishing a center from a focus algebraically triv-
ial? What about the general problem of the algebraic classification of the equilib-
rium points of a system of ordinary differential equations X = v(x) in R"?

1970-3. Investigate the connection between the rotation numbers of a Hamiltoni-
an system and the property that the Hamiltonian is single-valued.

1970-4. Carry over Poincaré’s Last Theorem about an annulus (and its conjec-
tural generalizations) to the case of multi-valued Hamiltonians.

1970-5. Study the Diophantine approximations on generic submanifolds (and the
bifurcations in k-parameter families).
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1970-6. Explore the equations in variations along a stationary solution of the Eu-
ler hydrodynamic equation (for example, the existence of conjugate points), in
particular, for the Kolmogorov flow and for the flow on the torus with the stream
function siny.

1970-7. Compute the curvatures of the groups SDiff($?) and SDiff(T?).

1970-8. Investigate the birth of discrete spectrum at the point of maximum speed,
from the viewpoint of genericity: non-degenerate case, bifurcations, etc. (in par-
ticular, for flows on the torus with the stream function f at the critical points of the
function v = ).

1970-9. Investigate the inertia indices of the stationary points of the kinetic ener-
gy on an orbit of the co-adjoint representation (from the viewpoint of bifurcations
and genericity!).

1970-10. Prove that a divergence-free vector field on S? has at least two zeros.
Prove an analogous statement for the mappings S? — S preserving oriented area
(verify beforehand that the index of a fixed point of an area- and orientation pre-
serving diffeomorphism of a plane does not exceed 1).

1970-11. What can one say about 7t (CP"\ V), where V is a generic hypersurface
of degree m?

1970-12. Evaluate the fundamental groups and the homologies of the spaces
of curves with the simplest singularities that split completely into lines in CP?
(the spaces of surfaces that split into planes in CP>, etc.).

1970-13. Evaluate the topological invariants of the manifold of nonsingular cubic
curves in CP?.

1970-14. Evaluate the fundamental group of the space of embeddings of a circle
into a solid torus (the answer is a knot invariant!).
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1970-15. Investigate topological properties of the stratification of the space of
meromorphic functions on a Riemann surface (rational functions in the case of 52).

1970-16. Is the problem of Lyapunov stability of an equilibrium of the system
X = v(x), x € R" algebraically trivial? What about the problem of asymptotic
stability? Does there exist an analytic Lyapunov function for this system?

1971-1. Let A be a germ of a diffeomorphism, A: (R",0) <, or A: (C",0} «—.
Let A = B*. Does this imply that A commutes with some diffeomorphism C such
that C¥ = id? This is true for the formal power series. Is this true for the diffeo-
morphisms of the circle?

1971-2. Bifurcations of invariant manifolds in neighborhoods of singular points:
see the conjecture on page 3 in the paper: ARNOLD V.I. Remarks on singular-
ities of finite codimension in complex dynamical systems. Funct. Anal. Appl.,
1969, 3(1), 1-5 [the Russian original is reprinted in: Vladimir Igorevich Arnold.
Selecta—60. Moscow: PHASIS, 1997, 129-137].

1971-3. The algebraic unsolvability of the problem of stability of the equilib-
rium and of the problem of topological classification of dynamical systems in a
neighborhood of a fixed point. See the papers: ARNOLD V. I. Local problems of
analysis. Moscow Univ. Math. Bull., 1970, 25(2), 77-80; ARNOLD V. I. Algebraic
unsolvability of the problem of stability and the problem of topological classifica-
tion of singular points of analytic systems of differential equations. Uspekhi Mat.
Nauk, 1970, 25(2), 265-266 (in Russian); ARNOLD V. I. Algebraic unsolvability
of the problem of Lyapunov stability and the problem of topological classification

of singular points of an analytic system of differential equations. Funct. Anal.
Appl., 1970, 4(3), 173-180.

1971-4. Prove the instability of the equilibrium O of an analytic system X =
—dU /dx in the case where the isolated (in C"?) critical point O of the potential U
is not a minimum.



1971-5 The Problems 11

1971-5. A smooth map A : M — M is called coarse if any map B that is close to A
(with derivatives) is topologically equivalent to A (that is, B = CAC™!). Are the
coarse maps dense in the space of all smooth maps S! «?

1971-6. Do there exist singular points of a vector field of finite codimension
that do not allow a topologically versal unfolding with the number of parameters
equal to the codimension (or with a finite number of parameters)? The conjec-

tural example in dimension 3: two pairs of imaginary roots with ratio 3 (thesis of
R.J. Sacker).

1971-7. Is it true that the set of germs of vector fields at a singular point, whose
topological type cannot be determined by any jet of finite order, has infinite codi-
mension? The same question—for Lyapunov stability and asymptotic stability.

1971-8. Investigate the pathology of the decomposition of the space of finite order
jets of diffeomorphisms at a singular point, into topological equivalence classes.
Conjecturally, if the dimension and the codimension are large enough, then:

1) the set of the equivalence classes is infinite and even continual,

2) there exists a manifold in the space of jets such that each jet from this
manifold defines the topological type of its germs, but this type changes along the
manifold so that for any point in the manifold there are points of another topolog-
ical type in its neighborhood.

Investigate analogous questions for the decomposition into Lyapunov
(asymptotically) stable and unstable jets. Is the number of connected compo-
nents of the sets of stability and unstability in the space of jets infinite?

1971-9. Generalize the Hilbert problem on limit cycles to systems with discrete
time.

1971-10. Explore the system of biocenos evolution without predators: x; =
xi(Ai [exp (Te[—Aaxi]) —1]).

1971-11. Find (upper and lower?) estimates for the Hausdorff dimension of
Navier—Stokes attractors in terms of the Reynolds number.
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1972-1. Investigate the topology of the complement of the caustic X3 in C?: is it
true that this complement is a K(=, 1) space?

1972-2. Investigate the monodromy group of the singularity x° +y* +z> (and also
the topology of the complement of the discriminant).

1972-3. Is it true that miny, F(x,y) is topologically equivalent to a smooth func-
tion: a) for a generic F, b) always?

1972-4. Investigate the local convexity of the boundary of the stability domain
(in the families of matrices and polynomials).

1972-5. Prove the uniform estimate for an oscillatory integral: how can one cal-
culate the uniform index for a neighborhood in terms of the phase at the degenerate
point?

1972-6. Is it true that the only singularities whose intersection form is positive or
negative definite are A, D, E?

1972-7. Is the following conjecture on transversality of the stratification of a
space of quadratic forms true: the manifold of quadratic forms in a Hilbert space
that are determined by oscillations of arbitrary membranes is transversal to the
stratified manifold of quadratic forms with multiple eigenvalues?

1972-8. Find “the most probable” representations of symmetry groups.

1972-9. Investigate the error of the method of averaging in the case of two fre-
quencies, when in average the ratio of the frequencies changes with nonzero rate
in the averaged motion (although the instantaneous rate of change in some fast
phases changes its sign).
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1972-10. Investigate the error of the method of averaging in generic multi-fre-
quency systems under the assumption of passing through a resonance.

1972-11. Evaluate the cohomology of the braid groups of the series D and E.

1972-12. Classify the singularities of convex hulls of generic submanifolds in a
vector space.

1972-13. Find the number of moduli for the Brieskorn singularities Y, x".

1972-14. Is it true that the complement of a bifurcation diagram is always a
K(m,1) space?

1972-15. Prove that simple orbits coincide with orbits that are adherent only to
orbits of smaller codimension (but not to unions of orbits of greater codimension).

1972-16. Find all the self-consistent gravitational potentials on the straight line
(the stationary points, possibly generalized, of the Poisson—Vlasov equation).

1972-17. Prove that a diffeomorphism of the two-dimensional torus homotopical
to the identity has at least four fixed points (counting multiplicities) and at least
three of them are geometrically distinct, whenever this diffeomorphism preserves
areas and leaves the center-of-mass invariant.

1972-18. Show that any orientation- and area-preserving diffeomorphism of the
two-dimensional sphere onto itself has at least two geometrically distinct fixed
points.

1972-19. Are the structurally stable maps of S! into itself dense?

1972-20. Straightening the circle diffeomorphisms (by a smooth change of vari-
ables) for almost all the rotation numbers (solved by M. R. Herman) and the topo-
logical obstacle to analytic straightening: the existence of periodic orbits arbitrar-
ily close to the real circle (maybe, even in a neighborhood of any point of the
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circle?). The similar obstacle to prolonging the reducibility annulus to a rotation
by a holomorphic change of variables or the reducibility disk in Siegel’s problem.

1972-21. The Floquet theory over the torus.

1972-22. A sufficiently curved submanifold is extremal in the Diophantine sense
(with probability 1, the Diophantine exponent is the same as in the ambient space).

1972-23 (R. Thom). A gradient vector field with a singular point has a trajectory
entering the singular point with tangency to some straight line.

1972-24. Investigate the connections between the invariants of a singularity of a
plane complex curve and the local fundamental group of its complement.

1972-25. Action of the monodromy M on the homology of the Milnor fiber. De-
compose the singularity having included it in the family f(z) — pz where p € C”
is a parameter. Examine the bifurcation manifold £ = {p,€ : € is a critical value
of the function z — f(z) — pz} € C**!. (This manifold is determined by the equa-
tion € = H(p), where H is the Legendre transform of f.) Consider ;(C"!\ X)
(germs at 0). Conjecturally, the properties of M (nilpotency, etc.) reflect the prop-
erties of m;. For example, if a path g0e’®, 0 < ¢ < 27N, commutes with all the
generators of 7y, then is it true that it does not shift vanishing cycles (so that
MY =1)?

1972-26. What are the restrictions imposed on the topology of a manifold by the
hypothesis that the manifold is a degree n algebraic hypersurface in R” (in RP™)?

1972-27. Is it possible to represent an algebraic function z(a,b,c), z' +az® +
bz? +cz+ 1 =0, as one of the components of a superposition of algebraic func-
tions in two variables? Find the conditions on the fundamental group, the adja-
cency of the strata, monodromy, and other topological invariants under which the
algebraic function is not representable as a component of a superposition {(conjec-
turally, these topological invariants are more complicated for the functions that are
not representable in such a form).
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In this problem algebraic functions can be replaced by “pseudoalgebra-
ic” functions, which are topologically (or combinatorially) equivalent to them—
conjecturally the nonrepresentability persists even for superpositions of such pseu-
doalgebraic maps.

1972-28. Find the three-dimensional characteristic class of the foliation of either
P(x,y) = C or Pdx+ Qdy = 0 in CP?*\ (singular points). (Here P and Q are
polynomials.)

The following three problems are related to this class.
1972-29. Determine if this class is integral (for example, in the real case).

1972-30. Determine the conditions on the deformations of the coefficients or on
the cobordisms that preserve this cocycle.

1972-31. Try to relate this class to limit cycles (not simply-connected fibers).
1972-32. Are the Boardman classes X/ topologically invariant?

1972-33. Prove that a symplectic diffeomorphism of a compact symplectic mani-
fold M onto itself possesses at least as many fixed points as a smooth function on M
has critical points, whenever this diffeomorphism is homologous to the identity.

1973-1. Describe the typical singularities appearing in the problems on differen-
tial games.

1973-2. Find the typical singularities of convex hulls.
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1973-3 (S. Smale - J. Debreux). Apply the singularity theory to economic models.

1973-4. Prove that the equilibria points stability problems and the problems about
limit cycles are algorithmically unsolvable.

1973-5. Explore the normal forms of implicit differential equations unresolved
with respect to derivatives, and their bifurcations.

1973-6. Investigate three-parameter bifurcations of the topological type of the
dynamics in a neighborhood of a singular point of a vector field (the zero and
an imaginary pair, etc.).

1973-7. The problem of smoothness of the stratum L. = const.
1973-8. The problem of semicontinuity of the modality (the number of moduli).

1973-9. Investigate the lower deformations of the critical points of functions
(a generalization of the theory of algebraic hypersurfaces!): the structure of dis-
criminants, fundamental groups, vanishing cycles, etc.

1973-10. Prove the “(2,2)” formula for the number of moduli of a I'-nondegen-
erate function in two variables, and deduce analogous “stereometric’” formulae for
the other invariants (W, etc.).

1973-11. Generalize the classification of the admissible types of quasihomogene-
ity of nondegenerately-quasihomogeneous critical points (which is known only in
the case of two and three variables). The question is related to the theory of cyclo-
tomic polynomials.

1973-12. Is it true that the complement of the discriminant of a function’s singu-
larity of finite multiplicity is K(x,1)?

1973-13. Investigate the topological invariants of bifurcation diagrams of func-
tions (at least within the scope of tables, in order to work out general conjectures!)
in the real and the complex case.
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1973-14. What restrictions on the coexistence of singularities (on the same fiber,
on different fibers) are imposed by the condition that the singularities belong to a
versal unfolding of a given singularity of finite multiplicity (the problem is related
to the 16th Hilbert problem)?

This is the problem that formed the basis of the semicontinuity of the spec-
trum of a singularity, estimates for the number of Morse points on a hypersurface,
etc.

1973-15. Develop the theory of cobordisms of the critical points of functions.

1973-16. Carry over the achievements of the theory of critical points of functions
to the study of smooth complex maps into spaces of greater dimension.

1973-17. Describe completely the stratification of the space of functions in two
variables.

1973-18. Is there any relation between the Minakshisundaran—Pleijel coefficients
and the coefficients of the polynomial whose value is the volume of the €-neigh-
borhood (e. g., for an isoperimetric embedding into RV)?

1973-19. Does each function have Morsifications with any number of critical
values, from 1 to u? How many distinct critical values are necessary in the real
case?

1973-20. Find the transformation group preserving the ratio of the forms [ u? dx
and [(u')? dx in the space of functions u.

1973-21. Construct Dynkin diagrams for simple singularities as the quivers of
some subspaces of local rings (derive the quivers from the structure of ideals?).
A. N. Shoshitaishvili suggested a construction that solves this problem for all cases
except Eq7, which is, therefore, unsatisfactory.

=V

1973-22. The Jacobian of the map (;) — () —y is degenerate on the line x = 0,
and the line # = 0 is not covered by this map (with the exception of the point 0).
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The Lyashko-Looijenga map for (unimodal) parabolic singularities has an anal-
ogous property. What is the general formulation of the corresponding conserva-
tion law: the more degeneracy in the domain, the more is uncovered in the range
(or: the less is covered in the range, the more singularities are in the domain)?

1973-23. Is the asymptotic Hopf invariant (or helicity) of a divergence-free vector
field in S° invariant under volume-preserving homeomorphisms?

1973-24. Study the relation between the asymptotic Hopf invariant and the Rei-
demeister (Ray—Singer) torsion.

1973-25. A.D.Sakharov’s conjecture: if a frozen-in vector field has linked or

knotted trajectories, it cannot relax to arbitrarily small energies by the action of
SDiff(B?).

1973-26. The relaxation paradox: one cannot believe that formerly non-inte-
grable fields have to relax to the eigenfields of the operator rot. What happens
to them? Does the limit field encounter singularities? Or there is no limit field
at all?

1973-27. Consider the mapping C* — C* associating to a point in a versal de-
formation the polynomial whose roots are the critical values of the corresponding
function. For the versal deformation of the singularity A; the multiplicity of this
ramified covering, (k+ 1)*~!, is equal to the number of trees with k + 1 numbered
vertices. Give a similar interpretation to the multiplicity of this mapping for other
simple singularities (which is, according to O. V. Lyashko, k! h*/|W|, where h is
the Coxeter number, and |W| is the order of the Weyl group of the singularity).

1973-28. Consider a random set of points in R” with density p. Let V{(d) be the
d-neighborhood of this set. Consider the averaged Betti numbers

i b;(V(d) N (ball of radius R))
R}E}o R?

— Bz(dap)

Investigate these functions.
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1974-1. The reconstruction of a quasihomogeneous Lie algebra from its root sys-
tem. Consider a collection of positive exponents (weights) of quasihomogeneity w;
of the coordinates x; in C" (i = 1,...,n). A generator of a quasihomogeneous Lie
algebra is a monomial x™d/0x; of weight zero (m € Z", m; > 0, Yw;m; = w;).
A root of this generator is a vector m =m—1; € Z" ! = {m: Y w;m; = 0}. Is
it possible to reconstruct the Lie algebra generated by these generators (up to an
isomorphism of Lie algebras) from the system of its roots, considered up to a lin-
ear transformation of the hyperplane R"~! that does not necessarily preserve the
coordinate hyperplanes m; = 0 in R*~1?

The system of weights cannot be reconstructed, but the algebra is almost
reconstructible (modulo the signs of some structural constants). In all the exam-
ples ever considered, different choices of these signs result in isomorphic algebras.
But it is unclear whether this is always the case.

1974-2. In the theory of the duality of convex polyhedra there appears a La-
grangian or Legendrian manifold with singularities. In the same way, in opti-
mal control theory there appear generalizations of Hamiltonian systems with non-
smooth Hamiltonians (a manifold of phase curves can pass through one point, as
in the case of the Hamiltonian H = |p1| + |p2|). Nevertheless, their “flows™ in
some sense satisfy the Liouville theorem and should be considered as generalized
symplectomorphisms (which are, most probably, not maps but Lagrangian sub-
manifolds with singularities in the product space).

Develop a theory of Lagrangian manifolds with singularities, and general-
ized symplectomorphisms applying to such situations (and even obtain estimates
from below for the number of intersection points of exact Lagrangian manifolds,
and for the number of fixed points of exact symplectomorphisms, generalizing the
Poincaré “geometric theorem™).

1974-3. Find all singular values of the moduli of parabolic singularities (that
change the topological or the combinatorial type of the projection of the mani-
fold of the discriminant’s singularities onto the bifurcation diagram of functions,
1. e., the set of clauses for a decomposition of a critical point into several clusters
of simpler critical points on (generally) several critical levels, realized by small



20 The Problems 1974-3

deformations of the function). What are the elliptic curves corresponding to these
values of moduli celebrated for?

1974-4. Find the classification problem of the theory of Lagrangian (Legendri-
an?) singularities, the answer to which would be in natural bijection with the list
of Coxeter reflection groups.

1974-5. Find applications of the (Shephard—Todd) complex reflection groups to
singularity theory.

1974-6. Symplectize the topology: Poincaré’s index theory of singular points,
apparently, turns into the theory of fixed points of symplectomorphisms and gen-
eralizations of Poincaré’s last geometric theorem (i. e., to a generalization of the
Morse theory). Do other topological theories have symplectizations? Similarly to
a noticeable difference between Z, and its complexification Z, the symplectization
can also be as far from the initial object as the Coxeter group Cy, is from Ay,

1974-7. Classify the simple singularities of functions on a manifold with an ac-
tion of a group (for example, finite) up to equivariant diffeomorphisms (commuting
with the group action).

1974-8. Investigate the typical perestroikas of a wave front moving with time
(and of the corresponding Legendrian map).

1974-9. Give a topological classification of the Legendrian singularities corre-
sponding to the parabolic critical points of functions.

1974-10. A conic singularity over a given base carries topological invariants of
the base into the singular point. For non-conic singularities (e. g., quasihomoge-
neous?) one may try to find traces of the discrete invariants of the base (e. g., the
rank and the signature of the Milnor fiber?) in the local algebra of the singularity.

What algebraic objects are encountered in this way? What happens to the
characteristic classes and numbers?
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1975-1. Every interesting discrete invariant of a generic singularity with Newton
polyhedron I 1s an interesting function of the polyhedron. Study: the signature,
the number of moduli, the singularity index, the integral monodromy, the variation,
the Bernstein polynomial, and J; (for generic sections).

1975-2. Is it possible to reconstruct the Newton polyhedron I" from a I'-nonde-
generate function f € m>? In the quasihomogeneous case, is it possible to recon-
struct the exponents? Is the main term reconstructible (or are those on the faces)?

1975-3. Let f be a quasihomogeneous but degenerate function. Is it possible
to make the Newton polyhedron of f smaller by a quasihomogeneous coordinate
transform? This is a particular case of the question of whether any function with
LL < oo 1§ stably equivalent to a I'-nondegenerate one.

1975-4. Let a function f be I'-nondegenerate. Is it true that there exists a correct
upper basis {ex} such that f ~ fo+ Y crer? Does there exist a correct upper basis
serving for all sums fy with upper summands? (If yes, then the answer to the first
question 1S positive.)

1975-5. Let (ay,1) and (0, 1) be two types of quasihomogeneity with affinely
equivalent patterns (i. e., sets of integers m > 0 of the hyperplane {m : (m,a) = 1}).
Is it true that the upper patterns {m > 0: (m,a) = 1 + B} are mutually equivalent
(with a non-monotone re-enumeration [y — P), and that the upper basis of the
first singularity 1s mapped to the upper basis of the other one?

1975-6. The stratum p = const of a quasihomogeneous function in the standard
versal deformation is linear and generated by weakly upper monomials. Does
this hold for a I'-nondegenerate function? (Generally—is the stratum P = const
smooth?)

1975-7. Can the complex singularities belonging to distinct strata |l = const be
topologically equivalent?
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1975-8. Is the singularity index semicontinuous?

1975-9. Is it true that the number s(u) of the strata u = const with p =32 is a
power of 27 For un =1, 2, 4, 8, 16 we have s(i) = 1, 1, 2, 4, 32, respectively.
Is there a logical pattern in the sequence s(p) =1,1,1,2,2,3,3,4,4,7, 11, 15,
14, 17, 22, 32, where the boldface numbers are the values of s(|L) that correspond
ton=1,24,8, 167

1975-10. Is the set of non-equivalent quasihomogeneous patterns with a given
number n of variables finite? The equivalence is the combinatorial (or affine?)
type of the convex hull of the pattern {m € Z" : m > 0, (m,at) = 1}.

1975-11. Is it true that in the complex case the complement of the bifurcation
diagram of a function is always a K(m, 1) space? Are the components contractible
in the real case? Conjecturally no, although R. Thom had thought that yes!

1975-12. Does every real-valued function have a real Morsification (with p real
critical points)?

1975-13. What is the minimal number of critical values obtained by a perturba-
tion of a critical point of multiplicity i with | Morse critical points? Conjecturally
it is n+ 1, where » is the number of variables (or corank).

1975-14. Is the corank a topological invariant?

1975-15. What singularities can absorb A;? split A; off? Why is every stratum
1 = const connected to the stratum A by a chain of strata of all codimensions?

1975-16. Suppose f D g~ fDh(f, g, h are isolated singularities). Is it true then
that g ~ h?

1975-17. Give an “objective” definition of a series of singularities.

1975-18. List all decompositions of simple singularities.
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1975-19. Calculate the stable cohomology ring of the complement of bifurcation
diagrams: a) of functions of #n variables, b) stable over n — oo,

1975-20. Compose a list of simple singularities of maps from m-dimensional
manifolds to n-dimensional ones.
How does the A—-D-F classification show up in this list?

1975-21. Express the main numerical invariants of a typical singularity with a
given Newton diagram (e. g., the signature, the genus of the 1-dimensional Milnor
fiber) in terms of the diagram.

1975-22. The problem of stabilization of invariants: investigate the behavior of
the main invariants of a singularity when adding squares of new variables.

1975-23. Compare the stratifications of real and complex singularities of func-
tions. Distinguish M-singularities among real forms. Compare real and complex
modalities. Is a complex stratification always the complexification of a real one?

1975-24. Investigate the stratum W = const (defined by the condition that the codi-
mension of the orbit is constant). Is the stratum smooth (for algebraic group ac-
tions, for natural problems of the singularity theory, e. g., for the classification of
singularities of caustics and wave fronts)?

Is it true that every such stratum becomes irreducible in the base of the
complex versal deformation of some suitable “deeper” singularity?

Does the cohomology ring of the complement of the stratum stabilize in
this “growing” base?

1975-25. Investigate the Lagrangian singularities of bifurcating caustics from the
cosmological “pancake theory” of Zeldovich (in particular, taking into account the
gravitation and particle fusion, and for nonpotential flows).

1975-26. Evaluate the normal forms of versal deformations of matrices of vari-
ous types (symmetric, unitary, etc.), and investigate the corresponding bifurcation
diagrams and cohomology rings.
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1975-27. Explore the asymptotics of oscillatory integrals (in particular, find uni-
form estimates near singularities of caustics and calculate the highest individual
singularity indices appearing unremovable in typical families with a given number
of parameters).

Carry over these estimates to integrals of the saddle-point method.

1975-28. Investigate the singularities of envelopes of typical families of subman-
ifolds from the viewpoint of the symplectic and contact theory of Lagrangian and
Legendrian maps.

1975-29. Explore the singularities of solutions of generic variational problems
(as well as those appearing in typical families with prescribed or not prescribed
finite number of parameters).

1975-30. Investigate the singularities of implicit differential equations (both or-
dinary and partial).

1976-1. Given a system of Newton polyhedra, is there a system of real polyno-
mials with these polyhedra which has the correct number of real roots (i. e., the
same as for a system with generic complex coefficients)?

1976-2. Consider two plane polynomial vector fields of degrees m and n, respec-
tively. Is it possible to estimate the number of intersection points of their limit
cycles in terms of » and m (find a sharp attainable estimate)?

1976-3. Investigate the convergence of the normal forms of equations of the form
Y'=fxnY).

1976-4. Build a theory of the “non-Desargues curvature form” (that measures
local non-equivalence to a linear equation) for y” = f(x,y,y).
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1976-5. Construct a symplectic (or contact) version of the asymptotic Hopf in-
variant: H: M*" — R, ® is a symplectic structure, O|lg=p =da, p=aA ol e
Q=1 [ B = const is a symplectic analog of the Hopf invariant. Given a
Hamiltonian vector field, study how to measure the average rate of evolution of
a Lagrangian subspace of the tangent space under the flow.

1976-6. Elaborate a theory of CP!-neighborhoods in complex manifolds (similar
to the theory of neighborhoods of elliptic curves already constructed, and preced-
ing the theory of neighborhoods of higher genera curves).

1976-7 (A. Tresse). Justify the finiteness theorems of differential invariant theory.

1976-8. Consider a function with Newton diagram I". Is it true that each of its
singularities of finite multiplicity 1s stably equivalent to a I'-nondegenerate one?

1976-9. Classify the typical singularities of synthesis in a generic problem of
optimal control given by a typical indicatrix field—a generic family of mappings
of a fixed manifold into all tangent spaces to the base manifold (with the point of
the base as a parameter).

1976-10. Investigate the asymptotic behavior of the measure of deviated trajec-
tories in the problem of a generic perturbation of a generic k-frequency condition-
ally-periodic system with m slow variables.

1976-11. For a given plane vector field with a singular point, construct an alge-
braic complex whose homology describes the limit cycles vanishing at the singular
point.

1976-12 (A. G. Kushnirenko). The Descartes rule implies that the number of real
roots of a polynomial has the number of 1ts monomials as an upper bound. Extend
this observation to polynomials of several variables: the simplicity of a formula
implies bounds on the topology of the variety defined by it. A theory of “fewno-
mials” has been elaborated by K. A. Sevast'yanov and A. G. Khovanskii, but the
estimates obtained in the multidimensional case probably are strongly nonsharp.
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1976-13. Is the stratum W = const smooth? The smoothness of the stratum would
follow from an affirmative solution to the following question.

Given an algebraic action of a complex algebraic group on a finite-dimen-
sional affine space (e. g., a linear representation), consider the set of all points
whose stationary subgroups have a fixed dimension. Is this set a smooth manifold?

1976-14. Does the real modality of a real-valued function coincide with the com-
plex one?

1976-15. For which weights oy, = A;/N does there exist a nondegenerate quasi-
homogeneous function of degree 1?

1976-16. Evaluate the modality of a I"-nondegenerate function in terms of its
Newton diagram I". In particular, prove that for semi-quasihomogeneous functions
the modality is equal to the number of monomials in a basis of the local ring on
the diagram and above it.

1976-17. Evaluate the signature of the quadratic form defined by the intersection
index in the middle-dimensional homology of a local nonsingular level set of a
I"-nondegenerate function of n variables when n =3 (mod 4).

1976-18. Find a normal form for all the I"-nondegenerate functions with a given
Newton diagram I.

1976-19. Find the Jordan canonical form of the monodromy operator of a I"-non-
degenerate function with a given Newton diagram I

1976-20. Let f be the Morsification of a real-valued function with a given sin-
gularity (say, I'-nondegenerate). What is the maximum number of components a
local real level set of f can have?

1976-21. Chebyshev polynomials of several variables. With every critical point
of a function of finite multiplicity, one can associate a “Chebyshev polynomial,”
which is the Morsification of this function with the least possible number of criti-
cal values. (The usual Chebyshev polynomials come from one-variable functions
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of the form z".) Which of the nice properties of Chebyshev polynomials in one
variable hold for the above defined polynomials of several variables?

1976-22. Uniform estimates for oscillatory integrals. An oscillatory integral has
the form

I(h,A) = / eiF(x’l)/h(p(x) dx, h— 0, (1)

n

where ¢ is a smooth function concentrated at a sufficiently small neighborhood of
the origin; F is a real-valued deformation of the function f = F(-,0) depending
smoothly on the parameter A; % is a small parameter; F(0,0) = 0. The uniform
index P of the singularity of the function f in the point 0 is the infimum of y such
that for any deformation F

(7, A)| < C(¢) || 2" ©)

for all sufficiently small |A|.

The content of the problem is to evaluate the index [3 (say, for I'-nondegen-
erate functions f).

For every pair of integers n and [ the universal uniform index B(n,l) can
be defined as the infimum of 7y such that the oscillatory integral (1) has an esti-
mate (2) which is uniform in A for all families F of functions of »n variables x and
[ parameters A except a meager subset in the function space.

The problem of evaluating rational numbers [3(n,]) appears to be very dif-
ficult, because it seems to be almost equivalent to the problem of the full classifi-
cation of all singularities.

For a fixed [ and n — oo, the numbers (n,[) stabilize:

B(n,l) = P(eo, 1) = P(I), if n is large enough.

The rational number B(7) is the greatest singularity index among singularities of
codimension /.

A problem for optimists: find all B(/). A problem for pessimists: find
B(1000).

1976-23. Uniform estimates of preimage variations. Let g be the germ of a dif-
feomorphism (R”,0,) — (R",0;) or (C*,01) — (C",0,), and let 1 be the multi-
plicity of the point g(01) = O,. The preimages of O, can merge in different ways
depending on the type of the singularity of g at O;. Investigate the asymptotic
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behavior of various geometric characteristics of the preimage of a small ball of
radius O centered at O, as & | 0. Thus, describe the different ways in which the
preimages of O, can merge.

An example of such a characteristic could be the so-called variations of all
dimensions.

The variation o (D) of a sufficiently good set D C R" is the mean value of
the k-dimensional volume of the orthogonal projection of D onto a k-dimensional
subspace L, over all subspaces L C R”. The volume is counted with multiplici-
ties, 1.e., the number of connected components that are projected into one point.
In particular, 6,,(D) is the volume of Dm and 64(D) is the number of its connected
components.

1976-24. The A, D, E problem. Surprisingly, the Dynkin diagrams

Ay o——- (k vertices, k> 1)
Dy, o_o___< (k vertices, k > 4)
Eg o—o 1 —o

E7 o—o l 0

Ey —o I oo

appear while solving various classification problems, such as the classification of:

1) critical points of a function;

2) regular polytopes (or finite orthogonal groups) in R?;

3) categories of vector spaces and linear maps;

4) caustics;

5) wave fronts;

6) groups generated by reflections (or Weyl groups with roots of equal
norm);

7) simple Lie groups;

8) singularities of algebraic hypersurfaces with positive or negative definite
intersection form of a neighboring smooth fiber.

Some connections between these objects are known. However, in most
cases, no explanation of the same answer for different problems has been given.
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The A, D, E problem: Find a general classification theorem from which
the solutions to all of the above problems would follow.

1976-25. The K(m,1) problem. In the case of simple singularities A, D, E the
complement of the bifurcation manifolds of a function and the complement of the
bifurcation varieties of its level set are the Eilenberg—MacLane K (=, 1) spaces.
Can this result be generalized to the case of nonsimple singularities?

More general problem: investigate topological properties of the comple-
ments of the bifurcation subsets of differentiable maps.

1976-26. Complete to a commutative diagram:

Constructing Constructing quasihomogeneous
simple singularities —— two-dimensional singularities
from regular polyhedra from automorphic forms
Constructing

bifurcation diagrams — ?

of simple singularities

1976-27. Complete to a commutative diagram:

Morse Theory —— Generalized Whitehead groups
Picard-Lefschetz Theory —— ?

1976-28. The stable cohomology ring. One can associate with a critical point of
a holomorphic function f the cohomology ring H*(f) of the complement of the
bifurcation diagram of the level sets in the base of a versal deformation.

Let f> be the germ of a function from a versal deformation of f;. Then the
transversal to the stratum corresponding to f> in the base of the versal deformation
defines an inclusion of the complements, and hence a homomorphism of the coho-
mology rings H*(f1) — H*(f»). For example, if fi = x" and f, = x"~! then H* are
the cohomology rings of the braid groups with » and n — 1 threads, respectively.
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Moreover, the homomorphism induces the stabilization of the cohomology rings
of the braid groups as n — oo.

Does a similar situation appear in general? If yes, what would be the stable
cohomology ring?

Similar questions arise for the complements of the bifurcation diagrams of
functions.

1976-29. The converse of the Lagrange—-Dirichlet theorem. Prove that the equi-
librium O of a Newton system X = — grad U is unstable whenever the critical point 0
of the polynomial (or arbitrary analytic function) U (xy,...,x,) is not a point of
local minimum.

1976-30 (R.Thom). Let U : R" — R be a polynomial. Prove that at least one
phase curve of the system x = gradU meets the critical point 0 with tangency to
some straight line.

1976-31. Algorithmic insolvability of the problem of stability. Is the problem of
stability of the equilibrium O of a system %, = Pr(x) algorithmically unsolvable?
Here P;(x), k=1,...,n, are polynomials with rational coefficients.

There are closely related problems whose algorithmic insolvability might
imply the algorithmic insolvability of the previous one:

1) The problem of existence of a limit cycle for the system x = P(x,y),
y = Q(x,y), where P, Q are polynomials with rational coefficients.

2) The problem of positiveness of a real Abelian integral § R(x,y) dx along
an oval P(x,y) = 0, where P, R are polynomials with rational coefficients.

1976-32. Typical singularities of solutions of variational problems. It is known
that variational problems lead to discontinuities and singularities even when ev-
erything is smooth in the setting of the problem. The singularities that appear can
be pathologically complex because of infinite degeneracies. Is it possible to avoid
the pathology by considering generic problems?

Examples: the problem of bypassing an obstacle; the problem of the quick-
est path with bounded velocity x € F, C T,R", Vx € R”; the problem of attainable
points. If we replace the indicatrix F; with its convex hull, then we get the follow-
ing problem: describe the singularities of the convex hull of a generic k-dimen-
sional submanifold in R”.
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1976-33. Singularities in the theory of partial differential equations. Consider a
generic partial differential equation with smooth initial data and smooth boundary
conditions. Describe the nature of singularities of solutions of the system on sur-
faces, curves, and at points in space, that are responsible for the situation when a
solution is not smooth but belongs to some functional space.

1976-34. Compositions of algebraic functions. Consider an algebraically closed
field k and n independent variables x1, ..., x, over k. Let K be the algebraic closure
of the field k(x1, . ..,x,). For every natural number r < n define the subfield M, C K
of all elements of K that can be obtained by a composition with not more than s — 1
iterations of algebraic functions of r variables. Clearly, My CM, C --- C M, =K.

Can it happen that M, = K for some r < n? More generally, how many
distinct fields are there among M;,...,M,? How many distinct fields are there
among M;, where M, C M, C K is the subfield of all elements of K that can be
obtained by a composition of not more than s — 1 algebraic functions of r variables.
For example,

M, =k(x1,...,x), |JM=M,.
s=1

Find the minimal M, (or M) which contains an element f satisfying
fn+x1fn_1 +- o+ X f+x,=0.

Similar questions make sense for the field k(x,xp, ... ) with an infinite number of
variables x;.

1976-35. How many connected components can the complement of a degree n
algebraic hypersurface in RP* have? This is unknown already for k = 3.

1976-36. What are the possible arrangements of ovals of a plane projective curve
of degree d such that the number of ovals is maximal possible, i.e., equal to

1+3(d-1)(d-2)?

1976-37. Can a planar vector field defined by two quadratic polynomials have
more than 3 limit cycles?

1976-38. Determine the singularities and other analytic properties of thermody-
namic functions when the interaction potential is known.
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1976-39. Does a symplectic diffeomorphism of the two-dimensional torus have
a fixed point whenever this diffeomorphism is homologous to the identity?

1976-40. What could be the mathematical equivalent of the physical notion of
turbulence? One of the aspects of this question: find “good” theorems of existence
and uniqueness for the 3-dimensional Navier—Stokes equations.

1976-41. Find mechanical (physical, chemical, etc.) phenomena which can be
described by systems with exponential repulsion of trajectories and with internally
unstable attracting modes.

1976-42. The numerical qualitative or ergodic investigation of multidimensional
dynamical systems (and, in particular, of limit modes in these systems) relies on
posing questions that are realistic, rather than those that usually appear in abstract
classification theorems. The high-priority problems here are:

1) teach a computer how to determine whether a trajectory enters a neigh-
borhood of an attracting invariant set;

2) if it does enter, teach a computer how to determine the dimension of this
set and, if possible, its topology;

3) teach a computer how to find the ergodic characteristics of motion on
this set; first of all how to determine whether the trajectories have exponential
instability on this set (i. e., whether the entropy is positive).

1977-1. Investigate the connection between the spectral sequence of the Newton
filtration and the mixed Hodge structure of a I'-nondegenerate singularity.

1977-2. Deduce generalizations of Petrovskil’s inequalities for curves with sin-
gularities from the mixed Hodge structures (hypersurfaces, etc.).

1977-3. Give a classification of unimodal boundary singularities.
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1977-4. Give a classification of the simple singularities in the presence of a fixed
singular hypersuface (or another algebraic subvariety).

1977-5. Explore the discriminant of Hs.

1977-6. Axiomatize the theory of complete and linearized invariants convolu-
tions.

1977-7. Determine and investigate the indices of singular points of 1-forms on
singular varieties.

1977-8. How do the Reidemeister and Ray-Singer torsion appear in singularity
theory?

1977-9. Give a classification of nondegenerate quasihomogeneous maps C* —
C? and C* — C? (similar to the decomposition of the space of maps C* — C? into
three types, and of the space of maps C* — C? into seven types).

1977-10. Prove Lyashko’s statements about the Poincaré polynomial of a quasi-
homogeneous map f : C" — C" with weights A; in the domain and D; in the range:

1 — st

HSvstD" sds 4
5 — st ] —stPi]l -5

=2 g pne).

) = (—1 m—nt):D—):A 1
p(t)=(=1) +res]]
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If m —n =1, then p(t) = t=P~L4p(¢), where h is the Poincaré polynomial
of the Hamm—Gruel filtration:

B | stPi— s ds
h(it = (—-1)"""|-1
(1) =(=1) gt | el | b prrere i B

Qrel _ Qm—n/de—n—l +df/\Qm—n—l

(the slash here means “modulo”).

For m —n = 2 this fails: Dy =Dy =2, Aj = --- = Ag = 1, h(t) = 3¢* + 413,
p(t) =272+ 471+ 1. If m—n =2, then A(1) = u(1). It is not known whether
this is the case if m —n > 2.

1977-11. Investigate the mapping that associates with each (unordered) set of
critical points (of a function from a versal deformation) the (unordered) set of
critical values. Investigate also the corresponding maps: (ordered sets of critical
points) ~~ (unordered sets of critical values). Find the discriminants, fundamental
groups and other invariants of branched coverings. How do the critical points
rearrange after a circuit around a caustic?

1977-12. Investigate the bifurcations (with the parameters Re€, Img€) of the fam-
ily of vector fields on the plane z = £z + Az|z|* + Z° if the values of A are generic.
(Conjecturally, they are the topologically versal deformations of Z4-symmetric
fields for each of the 48 domains in the A-plane.)

1978-1. Investigate the topological properties of functions f(x) = max, F(x,y).

1978-2. Explore the singularities of the boundary of the attainability manifold
in a typical controlled system.

1978-3. Explore the singularities of the Nekhoroshev steepness indices (the strat-
ification of the variety of Hamilton functions with respect to the indices). Calculate
the indices of a typical system with 1, 2, 3 degrees of freedom at all the points.
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1978-4. Let {I,} be a collection of first integrals of a Hamiltonian system. As-
sume that {I, } is closed under taking Poisson brackets, so that (Iy,Ig) = Fap([).
Is it possible to replace {I} with {Jq} such that (Jy,/p) = EYCZ\',B‘]"/? (If not, what
deformations of the initial terms Lie algebra are not equivalent to each other?)

1978-5. Formalize the principle: whatever is good, is also delicate.
1978-6. Relaxed Hilbert 16th problem.

1978-7. What resonances in a three-frequency Hamiltonian system are strong (the
strong resonances in a two-frequency system are |o;|: |@p|=1:1,1:2,1:3,2:3,
1:4,3:4,2:5,4:5)?

1978-8. Describe the boundary singularities By, and Cy, that appear in the problem
of bypassing an obstacle.

1978-9. How many cycles emerge from generic two-parameter bifurcations when
eigenvalues pass through +im;, +im; (in the corresponding slow system, i. e., for
a vector field in the plane that is tangent to the sides of an angle, from a bifurcation
with nonzero eigenvalues) in a two-parameter family of such fields, or—which is
the same—for (Z; x Z,)-equivariant fields in the plane?

1978-10. Investigate the stratification of the manifold of linear elements of gener-
ic surfaces near each of the 10 strata.

1978-11 (V.L.Popov). Find a connection between the theory of singularities and
the quotients of C? by finite subgroups of U(2) (not SU(2)!).

1978-12. Investigate geometric (topological?) properties of p-real submanifolds
in CV or in a Kihler manifold (with a restriction on the dimensions of the intersec-
tions of the tangent planes with the tangent planes multiplied by ).

1978-13. Investigate the relations between Smith’s theory of complex conjuga-
tions and the mixed Hodge structure on a manifold.
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1978-14. Investigate Lie subsemigroups (e.g., of SL(2,R)) and their tangent
cones at 1.

1978-15. How many limit cycles can emerge from a zero of a I"-nondegenerate
vector field with a given Newton diagram I['? Is it true that their number is less
than some constant N(I")?

1978-16. Investigate the singularities of Gaussian maps globally.

1978-17. Investigate the theory of symmetric hyperbolic systems of partial dif-
ferential equations in the framework of singularities.

1978-18. Construct explicitly the local topological classification of Lagrangian
and Legendrian maps in the cases where the smooth classification has modules,
or even functional modules. The smooth classification has been described by
V. M. Zakalyukin (it contains functional parameters) up to dimension 10, inclusive
of the mapped Lagrangian or Legendrian manifold.

But the following is not clear:

a) Does the Zakalyukin class define the topological type of the Lagrangian
(Legendrian) map? That is, is this type constant along each class?

b) Does this class define the topology of the decomposition into simpler
classes of a neighborhood in the space of jets? That is, are the bifurcation dia-
grams locally diffeomorphic or at least homeomorphic?

c) Here the bifurcation diagram can be interpreted as:

— A: discriminant (a bifurcation diagram of zeros);

— B: bifurcation diagram of functions (in the truncated base);

— C: the projection of A onto B;

— D: the decomposition into Lagrange classes in the space of jets;,
— E: the decomposition into Legendre classes.

d) Similar questions for multi-jets.

e) In order to apply transversality arguments to these stratifications of uni-
versal objects we need to know whether Whitney’s A and B conditions are satisfied.
(Conjecturally no, hence Zakalyukin’s “stratification” is subject to a refinement?).

1978-19. Investigate the bifurcations of type Ds in the 3-space topologically
(the problem has been studied by V. I. Bakhtin).
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1978-20. Investigate the singularities of bicaustics of type Ds, up to diffeo-
morphisms.

1978-21. Investigate the process of sweeping the bicaustic Dy, up to equiva-
lence (strong equivalence): given three smooth curves @; : (R,0) — (R?,0) starting
from O with the same velocity v # 0, in all other generic. The equivalence is pro-
vided by the diagrams

(R,0) —— (R%,0)
I |
(R,0) —" (R2,0)

(where the diffeomorphisms T and % are independent of i); the strong equivalence
is: 1(¢) =t + const.

1978-22. What is the behavior of the mixed Hodge structure of a singularity un-
der the action of a complete monodromy group? (This can distinguish subgroups
in T ?)

1979-1. How can one construct the quivers A, D, E from the singularities A, D, E
(and their local rings)?

1979-2. Show that, for a generic function F, the function min, F(x,y) is a topo-
logically Morse function.

1979-3. Prove the semicontinuity of the spectrum of a singularity. Is it the spec-
trum of an oscillating system with U degrees of freedom? In this case its interlacing
by the spectrum of a close system with L — 1 degrees of freedom would follow from
the Rayleigh—Courant-Fisher theory.
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1979-4. Construct a “complexification” of the homology theory (replacing a
boundary with a two-sheet branched covering). What is the complexification of
orientation? (Apparently, it assigns an element of Z = t;(U(n)) to a loop?)

1979-5. Construct the characteristic classes of Lagrangian singularities from the
stable cohomology ring of complements of caustics.

1979-6. Do the real and the complex modality for a critical point of a function
always coincide?

1979-7. Analyze the theory of envelopes in the framework of the theory of sin-
gularities. Find versal unfoldings, bifurcation diagrams, and the connection with
symplectic and contact geometry.

1979-8. Why are caustics irreducible? How many irreducible components does
the singularity manifold of a caustic have?

1979-9. Investigate the properties of the discriminants of non-quasihomogeneous
Legendrian singularities. No topological classification has been found, even in the
cases where a smooth classification (with moduli) is available.

1979-10. Describe the mixed Hodge structures of superpositions of functions.

1979-11. Investigate typical singularities of the boundary of the time-like attain-
ability domain.

1979-12. Investigate the singularities of the time of shortest bypass of an obstacle.

1979-13. TIs it true that the singularities of the boundary of the attainability do-
main in a generic controlled system are the same as those of a generic projection of
a manifold with boundary? More generally, a “parameter” in optimization prob-
lems is a choice of control from a function space (which can have a boundary
or other singularities). Are the singularities of the boundary of attainability in
this case the same as those of a generic projection of finite-dimensional boundary
manifolds with the same singularities?
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1979-14. Ts it true that the function of the shortest time within the attainable set
has the same type of singularities as the minimum miny, F(x,y) of a generic family
of functions?

1979-15. Investigate the bifurcations of the phase portrait in two-parameter
generic systems of vector fields in the plane for the fields which are tangent to:
a) a line, b) a pair of intersecting lines. (The normal forms for the eigenvalues are
0, +im and +i®y, +iw,.)

1979-16. Study the number of zeros of the integral I{h) = ¢, (Pdx + Qdy),
where 7, is a closed curve from the (continuous) family of periodic orbits of a
polynomial vector field [e. g., vi = {x,y: H(x,y) = h}, say, for H = y*> + x> — x]—
an infinitesimal version of the Hilbert 16th problem on cycles. What can be the
maximal number of roots of I(h) when I(k) is not identically zero?

1979-17. Give an asymptotically sharp bound for the number of connected com-
ponents of the space of nonsingular real algebraic hypersurfaces of degree d.

1979-18. Is the equality in the Petrovskii—Oleinik inequality attainable?

1979-19. Does the Ragsdale conjecture hold? One may reformulate this conjec-
ture as follows. Let f(x,y,z) be a homogeneous polynomial of an even degree,
Fy = f4+¢* and RV, is the local level surface Fy = 4¢. The Ragsdale conjecture
1s 1n the estimates of the number of components

bo(RV,) < HPH(FL),  bo(RV_) < KPP (FL)+1

in terms of the mixed Hodge structure (if f has appropriate sign).

1979-20. Give the best possible estimates (through the degree or a Hodge num-
ber) for the individual Betti numbers of real algebraic hypersurfaces, in particular,
for the number of components by. Probably, it is easier to estimate the numbers
bo, bo — b1, by — b1+ by, ..., etc. and the combinations of the local type Morse
numbers Mgy, My — My, My — M+ M, ... (M; is the number of critical points
of index i merging at zero for some Morsification of the homogeneous equation
of a hypersurface).
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1979-21. What is the maximal number of handles that a component of an alge-
braic surface of degree n in RP> can have?

1979-22. Estimate the number of ovals of a curve with a fewnomial equation,
through the number of its terms.

1979-23. How many nonconvex ovals can a plane algebraic curve of degree n
have?

1979-24. Does the isotopy type of the pair (plane M-curve, its complex orienta-
tion) determine a connected component in the space of nonsingular projective real
curves of a given degree?

1979-25. Explore the fundamental group 7t of the complement of the set of sin-
gular hypersurfaces in the complex projective space of all hypersurfaces of a fixed
degree in CP™. Find the corresponding monodromy group (a representation of
by automorphisms of the homology group of a hypersurface).

1979-26. Consider the system x = P(x,y), y = Q(x,y) where P, Q are polyno-
mials of the second degree, and let H(x,y) be a first integral of this system (not
necessarily a polynomial one). How many limit cycles can emerge from com-
ponents of level curves of H by small variations of P, Q leaving them quadratic
polynomials?

1979-27. In the system of differential equations x = P(x,y), y = Q(x,y), let P, Q
be power series starting with homogeneous polynomials P,, Q, of degree n. Is
it true then that for almost all pairs (P,, Q) the number of limit cycles emerging
from the origin by a small perturbation of the system, is bounded by a constant
depending only on n?
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1980-1. I(h) = §5_,(Pdx+ Qdy). Find an upper bound for the number of zeros
of the function I.

1980-2. The boundary value problem for x = P(x,e"), x(2%) = x(0): the number
of solutions.

1980-3. The number of limit cycles emerging in the “Lotka—Volterra” system

x=x(o+Px+yy+---)
y=y(@+ex+Lly+--)

near o = 0 = 0. In particular, integrals along x*y47" =h,z=1—x—1y.

1980-4 (E. A. Demékhin). Explain the strange bifurcations of 27@-periodic solu-
tions of the equation &3x" + k& + %2 = O as the parameter k varies.

1980-5. Investigate the structural stability of contact fields in R3.

1980-6. Apply the mixed Hodge structures to the Jacobian problem (in both cases
analyticity differs from algebraicity!).

1980-7. Construct a theory of caustic cobordisms (different from that of La-
grangian cobordisms).

1980-8. In the theory of singularities (e. g., critical points of functions), why is the
codimension in the real case the same as in the complex case? Compare with the
R- and C-modality and with the (co)dimension of the prolonged self-intersection
line of the swallowtail or the umbrella.

1980-9. Apply mixed Hodge structures to real algebraic geometry. For example,
for estimation of topological invariants of real Morsifications, and for investigation
of the topology of discriminants.
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1980-10. Apply mixed Hodge structures to problems concerning superposi-
tions—for they “remember” the dimension of the smooth algebraic cycle from
which a given (co)cycle originates (say, on the graph, or on the discriminant,
or on the complement).

1980-11. Prove the semicontinuity of the spectrum of singularity. If the singular-
ity S is adjacent to a simpler singularity ' with u’ < p, then [y < fork=1,...,1".

1980-12. Complexify the homology theory.

1980-13. Do there exist any formulae for the complete invariants convolution
in terms of the linearized convolution (similar to the Campbell-Hausdorff formula
representing multiplication in a Lie group via the commutator of its Lie algebra)?

1980-14. What is the complex analog of the generalized Whitehead groups in
algebraic K-theory? One of the candidates is the “quasiresolvent” of the funda-
mental group of the complement of the bifurcation diagram of a singularity.

1980-15. The embedding of the base C* of a versal unfolding of a simpler singu-
larity §’ into the base C* of a versal unfolding of a more complicated singularity S
(u> ') induces a homomorphism

H*(CHM\X) — H*(C¥'\T)

of the cohomology rings of complements of the corresponding bifurcation dia-
grams.

Are these homomorphisms canonical? Is it possible to define the stable
cohomology ring?

1980-16. Does the real modality of a real singularity with finite multiplicity
f:(R",0) — (R,0) always coincide with the complex modality?

1980-17. Show that the function F = max, f(x,-) is topologically equivalent to a
Morse function for a generic family f.
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1981-1. Lannér schemes (Coxeter schemes for the groups generated by reflec-
tions in the walls of simplices in the Lobachevskian space).

o0— — —0O G O O O C‘)—T T—T @) O Oo——0—0
G O g ) mrv— ) o———0 o—0 G O O O———20
OAB O O O O o— Oo——0 O O O———O 0]

I

a b C

Simplices in the Lobachevskian space: a) the series on the plane, b) 9 simplices in
the three-dimensional space, ¢) 5 simplices in the four-dimensional space.
Find applications of these schemes in singularity theory.

1981-2. Calculate the worst Nekhoroshev indices for generic Hamiltonians with
n degrees of freedom (or at least the asymptotics of these indices for n large).

1981-3. Let
I(A) = /eis(x’l)/ha(x,l) dx,
xeRK

where S is a generic function. Prove that there is the following bound for A such
that S(-,A) is a Morse function:

aZS -1/2
det —

< k/2
IIh(l)I < Ch Z Ox2

x € critS(-,A) Nsuppa(-,A)

?
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where crit 1s the set of critical points of a function, and supp is its support. Y. Colin
de Verdiére proved this for simple or parabolic singularities.

1981-4. Does there exist an exact Lagrangian embedding of T? into the standard
symplectic space R*?

1981-5. Will a nonstandard contact structure of R> remain nonstandard after an
arbitrary complexification?

1981-6. Evaluate the cohomology rings L, = lim 7, ;T A,, where A, are the tau-
H—oo

tological Grassmann bundles over U(n)/O(n) or over U(n)/SO(n), and T is the
Thom space.

1981-7. A quasifunction is an exact Lagrangian embedded submanifold of T*V
that is isotopic to the zero section in the class of such embeddings. Critical points
are intersections with the zero section. Conjecture: the number of critical points
for a quasifunction is not less than for a function.

1981-8. What function on the collar can be extended over the ball without critical
points?

1981-9. Consider closed contractible (bounding a disk on the universal covering)
curves of constant geodesic curvature K # 0 on a surface M2. There are at least as
many such curves as critical points of a function on M?2. Counterexample: horo-
cycles on a surface of constant negative curvature. However, for T? and S? this
conjecture has not been disproved.

1981-10. Construct a bifurcation theory for optical caustics, in particular, prove
that “flying saucers” caustics do not exist.

1981-11. Find a Lagrangian singularity related to the hypericosahedron group Hy.

1981-12. Find the (Zariski) relations between the (Zariski) relations of swallow-
tails (and, in general, explore “syzygies,” or “noncommutative resolvents” of the
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fundamental groups of complements of algebraic hypersurfaces, associated with
the sequence of complete flags of generic projections, and with generators and re-
lations of the sequence of the fundamental groups of complements of discriminants
of those projections).

1981-13. Evaluate the fundamental group of the space of nondegenerate plane
curves of fixed degree d.

1981-14. Investigate the singularities of the density of a gravitationally evolving
dust-like medium, if the initial potential field of velocities is generic (even on the
line!).

1981-15. Can the barycenter of a convex part of a closed convex surface coincide
with the barycenter of the surface?

1981-16. Is it true that a polynomial vector field on the plane has only finitely
many limit cycles? H. Dulac committed an error proving it.

1981-17. Investigate the winding number of an analytic diffeomorphism of S!
(x — x+a-+ bsinax, etc.) as the limit (as Ima — 0) of the modules of elliptic curves
formed by the orbit space for Ima # 0. What are the singularities of the analytic
extension of the rotation number as a function of a?

1981-18. Is there a kinematic magnetic dynamo in the topology of the three-di-
mensional ball B>?

1981-19. Give a contact version of the problem of bypassing an obstacle.

1981-20. Is it true that the singularities of the increment of a generic family of
matrices (polynomials) are topologically equivalent to convex polyhedral or at
least Morse functions (possibly, polyhedrally convex, Morse modified along the
parameters, on which everything depends smoothly)?

1981-21. Explore singularities in typical controlled systems.
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1981-22. Develop the theory of versal unfoldings of differential forms f(x)(dx)%.

1981-23. Evaluate the number of different “inflections” of algebraic surfaces of
degree d in CP°.

1981-24. Investigate what the mixed structures and the spectra can provide for
the Bruce problem about the maximum number of Morse points on a hypersurface
of degree d.

1981-25. Work out a monodromy theory (of a representation of 7, of the com-
plement to a bifurcation diagram) for complete intersections (not only for hyper-
surfaces): one should consider flags of hypersurfaces and sequences of Dynkin
diagrams.

1981-26. Explore the effects of singularities (inflections of various types) on the
asymptotics of the numbers of integer points on submanifolds of the Euclidean
space and inside 1ts domains (as well as the effects on the Diophantine approxima-
tions).

1981-27. Construct a theory of self-intersections of Lagrangian and Legendrian
manifolds. To what extent are the self-intersections topologically inevitable (lo-
cally and globally)?

1981-28. Investigate the singularities of the convex hulls of M? in R* (especially
their modules).

1981-29. Elliptic coordinates in R":

a) a “magnet” generalization of the Ivory theorem (to forms);

b) infinite-dimensional versions (with either discrete or continuous spec-
trum): what happens to the Jacobi formulae? 1n particular, to the surprising duality
between the expression of impulses in the elliptic coordinates and the inversion
formula of the coordinates;

c) elliptic coordinates and the Hilbert transformation;

d) equations of mathematical physics, integrable with the help of b).



1982-1 The Problems 47

1982-1. Is the symplectic structure of a neighborhood of the Lagrangian opening
of the swallowtail standard?

1982-2. The Morse—Darboux super-lemma.

1982-3. Give a description of the liftable diffeomorphisms and fields in terms of
their behavior on the singularities in the base.

1982-4. In the theory of integrable systems, Coxeter groups A, D, E appear
(A.M. Perelomov and others). In the theory of integrable systems with a boundary
(E. K. Sklyanin), do H; 4 also appear?

1982-5. Describe the shapes of the resonance zones for torus mappings defined
by trigonometric polynomials which perturb a translation (Mathieu type systems).

1982-6. Study the asymptotics of solutions of the thermoconductivity equation on
differential forms with transfer (“dynamo’): uniqueness of the stationary solution
in a given homology class.

1982-7. Investigate the singularities of the boundaries of the manifolds of elliptic
and hyperbolic polynomials.

1982-8. It is known that the first sheet of a hyperbolic surface is convex. What
can be said in this vein about the second, third etc. sheet?

1982-9. What happens to Legendre transforms (fronts) if the initial functions (hy-
persurfaces) depend on parameters and become singular for some parameter val-
ues? What perestroikas of dual objects take place there?
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1982-10. Supplement the formal analysis of normal forms performed in the paper
ARNOLD V.I. Reconstructions of singularities of potential flows in a collision-
free medium and caustic metamorphoses in three-dimensional space. Trudy Semin.
Petrovskogo, 1982, 8, 21-57 (in Russian); the English translation. J. Sov. Math.,
1986, 32(3), 229-257, by a study of smooth and analytic normal forms.

1982-11. Prove that taking gravitation into account in a dust-like medium does
not affect the topological features of caustic perestroikas (with typical initial po-
tential flow).

1982-12. Given a stratum U = const, what maximal value of | do the adherent
singularities have? For instance, the adjacency Py — E¢ exists whereas Py — Ay
and Py — D7 do not.

1982-13. Find normal forms for a typical contact structure in a neighborhood of
the swallowtail (and investigate the hierarchies arising from the constraints on the
ranks along submanifolds or on their tangent planes at the singularity).

1982-14. Develop the algebraic (analytic?) symplectic (contact) geometry that
treats all the things in terms of ideals. Example: replace df = 0 with 3k : the
Poisson bracket of f and 4 is 1. Some theorems known 1n the nonsingular situation
may happen to be more general (say, for isolated singularities?).

1982-15. Let s N
0=z -
H ZAk 1 = ;prz

k=1
(A; and N are natural numbers) be a polynomial with nonnegative coefficients p,.
Consider the number B(a) =Y (p, : aN < r < (a+ 1)N).

Increase the fractions N /A, (so that the coefficients of the polynomial re-
main nonnegative). Prove that the number B(a) will then also increase (possibly
nonstrictly).

In the n-dimensional case, Ay/N are the weights of a quasihomogeneous
function with an isolated singularity at 0.

1982-16. Consider a Newton polyhedron A in R” and the number p(A) = n!V —
Y(n—=1)!V;+Y(n—2)!V;;—---, where V is the volume under A, V; is the volume



1982-16 The Problems 49

under A on the hyperplane x; = 0, V;; is the volume under A on the hyperplane
x; = xj = 0, and so on.

Then w(A) grows (non strictly monotonically) as A grows (whenever A
remains coconvex and integer?). There is no elementary proof even for n = 2.

1982-17. Consider the boundary value problem Au = 0 in the domain bounded
by a quadric (say, a hyperbola in the plane, with the boundary value 1 on one
component and O on the other). Then there exists a “natural” solution (moreover,
there is a natural condition at the infinity which selects it).

Does there exist any reasonable filtration for harmonic functions and forms
in the case of generic (hyperbolic?) algebraic hypersurfaces that yields a one-to-
one correspondence between (relative) homology classes and harmonic representa-
tives (for quadrics, the answers of Vainshtein and Shapiro would appear)? Ts there
a real version of the mixed Hodge structure?

1982-18. Develop the singularity theory for mappings between symplectic (con-
tact) manifolds (a singularity is a violation of symplecticity).

1982-19. Explore symplectic correspondences, i.e., multivalued symplectomor-
phisms
X C (A* x B*"), (W4 +Rhmp)|x2 is symplectic.

Find the hierarchy of the germs of such correspondences.

1982-20. Study the rationality of Poincaré series in natural analytic classifica-
tion problems, e. g., for the germs of typical mappings in the worst dimensions
where functional moduli are inevitable (virtually excluding the germs from a set
of infinite codimension). Another example: apply this to the classification of the
equations y' = F(x,y,y).

1982-21. What happens to the Givental triads when the quadraticity condition is
violated (generically)?

1982-22. Can a divergence-free vector field tangent to the layers of Rieb’s folia-
tion have an exponential repulsion of trajectories?
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1982-23. Investigate the singularities in the problem of bypassing an obstacle
when the latter is not a hypersurface in the ambient space (e. g., for curves in R?).

1982-24. Can the center of mass of a convex domain in a homogeneous sphere
coincide with the center of the sphere? Since it cannot, it makes sense to try to
prove the existence of two closed curves (magnetic trajectories) of constant posi-
tive geodesic curvature on the sphere as follows. Fiber the space of convex disks
over S by associating to a disk its “center” point on the sphere. Find constrained
critical points along fibers using variational methods, and then apply Morse theory
techniques to look for critical points along the base.

1983-1. How many points (curves, ... ) of inflections of various types are merged
at a singular point of a hypersurface (subjected to a generic diffeomorphism)?
J. Pliicker: 6 inflections meet in A1, and 8 in A;.

1983-2. Courant’s theorem says that the zeros of the n-th eigenfunction of the
Dirichlet problem for the Laplace equation divide the domain into at most »n parts.
Carry over Courant’s theorem to the case of systems (when the zeros form a set of
codimension greater than 1).

1983-3. Can one carry over the Conley—Zehnder theory to reversible systems (the
latter resemble Hamiltonian systems so much that one would like to treat the prop-
erty of being Hamiltonian as a variety of “superreversibility”)?

1983-4. Let N lines be given in the real plane, and their complement be chess-like
painted black and white. What is the greatest difference between the number of
black and white regions?

1983-5. How many points of maximum can a polynomial of degree d in two (n)
variables have? In particular, what would it be if all (d — 1)? critical points are real?
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1983-6. Find local contact classification of pairs of surfaces in J (R, R) (in C*).

1983-7. How many nondegenerate periodic orbits can a diffeomorphism of S!
have if it is given by a trigonometric polynomial of degree n? The same question
for a smooth map which 1s onto, or for a diffeomorphism which 1s given trigono-
metrically-rationally.

1983-8. Investigate real forms of reflection groups.

1983-9. Is it true that the number of periodic trajectories of a diffeomorphism
of S! is bounded by the integers which are the invariants (e. g., genera, bidegrees)
of the algebraic self-correspondence that is the complexification of the diffeomor-
phism?

1983-10. Consider a projection R"=)3 — R¥*=)? and the preimage of the integral
points Z*=)2, that are parallel lines (subspaces of dimension n — k) in R"=)3,
Consider a generic curve (manifold of dimension k— 1) yin R"=)3 and its linking
number with all the parallel lines (subspaces of dimension n — k). Investigate the
behavior of the linking number under dilations of ¥ in terms of inflection points
of v. (If n = k then this is a question about the number of integral points in a
domain!)

1983-11. Is it true that the integrals I(h) = ¢5_,, (P dx+ Q dy) with varying poly-
nomials P, Q form a Chebyshev system (or, at worst, the number of zeros 1s not
too much greater)? Here, for instance, H is a cubic polynomial y* + x> —x. A sim-
ilar question 1s also interesting about perturbations of other integrable polynomial
systems of the Lotka—Volterra type [where H = x®yPz¥, z = 1 —x —y, with the
corresponding (non-polynomial) P, Q1].

1983-12. Carry over the relation of indeterminacies (which connects projections
of a Lagrangian manifold onto p- and g-subspaces) to Lagrangian manifolds with
singularities and to the duality of convex polytopes. For example, the stronger
is a singularity of an oscillatory integral (as the wave length h — 0), the less is
the number of points (in the A-space) with this asymptotic (since S(x,A) —Ax is a
Morse function in (x,A)). But one can probably say more!
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1983-13. De Rham mixed structure theory: Define filtrations in a neighborhood
of a singularity of a form in the real case in terms of the type of the singularity.

1983-14. Describe the Gibbs distribution of the density evolution under the action
of a small diffusion € and a flow v with multivalued potential U on a non-simply
connected manifold as € — 0: u; + (uv), = €Au, v = —gradU (e. g., v is a pseu-
doperiodic function on R?, v = ax + by + periodic part, and u is a function on a
torus R? /periods). Describe how the limit is being approached (for a generic U).

1983-15. Is it true that the singularities of the ellipticity and hyperbolicity bound-
aries in generic families are the same (topologically, smoothly) as the singularities
of graphs of functions max, F(x,y) for generic families F?

1983-16. Is it true that the number of limit cycles emerging from a singular point
of an analytic system, is bounded (except for systems forming a set of codimension
infinity, or possibly except for the integrable ones only)?

1984-1. Examine the singularities of the boundary of the space of Chebyshev
systems of functions.

1984-2. Construct a Morse theory with nonholonomic constraints, say, for higher
derivatives.

1984-3. Investigate global topological restrictions on caustics implied by the con-
dition that the eiconal is positive definite.

1984-4. Prove that on T? there are (generically) at least four closed (on the uni-
versal covering) curves of constant geodesic curvature K > 0.
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1984-5. Consider the circle x> +y* = 1 and a quadratic function with parabol-
ic level lines intersecting the circle not more than twice [e.g., y + (x — a)?,
lal > ag, where the value ap > 0 is determined by the condition that the parabola
y 4 (x — ap)? = ¢o has a point of cubic tangency with the circle under a suitable
choice of cg]. Consider the correspondence permuting the intersection points.
The product of two such correspondences changing orientation (the second, for
example, changes the sign of y or of x) determines an orientation-preserving diffeo-
morphism of the circle onto itself. Is the number of cycles (periodic trajectories)

of this diffeomorphism bounded by a constant independent of a?

1984-6. Classify the germs of “generic” Poisson structures in R>. The term
“generic” needs to be defined. The situation is the same as in classifying Lie
algebras or commuting pairs of functions on the symplectic plane and in similar
problems: the initial infinite-dimensional space is not smooth and, generally, may
have components of “different dimensions.”

1984-7. Build the theory of versal deformations of Fuchsian systems. Is it true
that regular singularities are isomonodromic Iimits of (confluent) Fuchsian points?
Which matrices from the monodromy group converge to the Stokes matrices in the
irregular case?

1984-8. Give an axiomatic definition of skew-symmetric versions of the mon-
odromy groups of simple singularities (which would lead to their classification,
similar to the classification of reflection groups or Weyl groups in the symmet-
ric case). Apply this definition to complete intersections (considering a flag of
embedded hypersurfaces and sequences of root systems).

1984-9. Is the number of Dynkin diagrams (of strongly distinguished bases) of a
fixed singularity finite?

1984-10. Describe variational and symplectic properties of Picard—Fuchs equa-
tions (the Gauss—Manin connection). Are they not the Euler equations for an ap-
propriate group?

1984-11. Translate the relative Morse theory into the symplectic language of the
theory of Lagrangian intersections or Legendrian links.
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1984-12. Carry over the asymptotic ergodic definition of the Hopf invariant of a
divergence-free vector field to S. P. Novikov’s theory generalizing the Whitehead
product in homotopy groups.

1984-13. Does there exist a mapping RP> — R? with only one Whitney cusped
singularity? Yes; solved by Yu. V. Chekanov on October 23, 1984.

1984-14. What is known about C-contact structures in C3?

1984-15. How can we extract information independent of the choice of generat-
ing loops in the successive fundamental groups of complements of points on the C
fibers of successive bundles from the “resolutions” of the fundamental groups of
complements of algebraic hypersurfaces?

1984-16. Study the equation dy/dx = f(x,y) where x and y are angular coordi-
nates on the circle while f is a trigonometric polynomial: How many limit cycles
can occur for a given Newton polygon?

1984-17. Prove that the standard symplectic space R* contains no exact embed-
ded Lagrangian torus.

1984-18. Complexify the Rolle theorem: if the image of the boundary of a disk
equals 0 modulo 2, then the disk contains a critical point inside.

1984-19. Classify the umbrellas in a contact space (that is, germs at the vertex
up to contactomorphisms).

1984-20. Calculate the number of vanishing inflections (of type A,) at a singular
point of a hypersurface A, in C* (in C") subjected to a generic diffeomorphism
(if n = 2 then there are 8 inflection points of type A,—Pliicker’s formula).

1984-21. Consider a “generalized Bernoulli scheme”—a network of identical au-
tomata with finite radius of action (and memory) in Z" (n = 1?). Can one derive
from their work a difference approximation to something non-Gaussian (i. e., not
to the equation of heat conductivity)? Just to what?
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1984-22. Does there exist a finite number (as R. Thom assumed) of various
(germs of) bifurcations of the phase portrait of a gradient system, generically de-
pending on 4 parameters? R. Thom stated that there are 7 types of such systems.
According to B. A. Khesin, there are at least 13 of them, but probably their number
Is infinite’

1984-23. Develop a ‘“supertheory” whose even component corresponds to re-
versible systems, and odd one to Hamiltonian systems.

1985-1. Examine the singularities on the boundary of the space of fundamental
systems of solutions to n-th order linear ordinary differential equations.

1985-2. Examine the singularities on the boundary of the space of Chebyshev
systems of functions.

1985-3. Study the topological properties of the stability boundary of n-th order
linear ordinary differential equations and of the graph of increment.

1985-4. Given the equation
Uy + (UV)x = Ellyy, v is a potential field,

on the circle x mod2x, investigate the eigenfunctions of this equation with the
eigenvalues close to zero, as € — 0 (also study the case of a multivalued potential).

1985-5. Given a contact structure (say, the standard one) on S° and a curve being
a Legendrian knot of a certain type. How many characteristic chords of the knot
are ensured (for an arbitrary contact form)?

1985-6. Transfer the Ragsdale conjecture to singularity theory (express the right-
hand sides of the Ragsdale-type inequalities for Morsifications of a singularity
in terms of the invariants of the singularity rather than in terms of degree). Even
for X" +y", a new theory is obtained because of upper deformations.
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1985-7. Prove theorems on the stabilization of various objects: the cohomology
rings of complements of bifurcation diagrams (in C and R?), the multiplicities of
strata adjacency, the increment, the boundary of hyperbolicity, Vassiliev’s complex
of strata, etc.

1985-8. Develop R- and C-theories of vanishing inflections (and flattenings).

1985-9. Give an axiomatic description of the Poisson structures arising from
mappings of periods of general forms (even for Ay): a) determine the ranks (e. g.,
the Lagrangian property) on tangent spaces of various strata of discriminants,
b) classify all Poisson structures with given ranks. The example of a usual swal-
lowtail in C* has been cleared up.

1985-10. Is it true that the singularities of the hyperbolicity boundary include the
singularities of the ellipticity boundary (at least stably)?

1985-11. How is the informal complexification of the notion of orientation relat-
ed to the spinor structures?

1985-12. Are the Picard-Fuchs equations Hamiltonian with respect to some nat-
ural symplectic structure, and do they possess a positive Lagrangian responsible
for some kind of non-oscillatory behavior?

1985-13. Can the awful formulae of representation theory (Klebsch—Gordan co-
efficients, etc.) be simplified by the aid of the theory of convex polyhedra? Volumes
of sections and numbers of lattice points in them are expressed in an equally com-
plicated way via, say, equations of faces or coordinates of vertices of a polyhedron,
but conceptually these are simple objects. Maybe one will feel easier if awful for-
mulae are replaced with these simple geometric constructs. In particular—what is
the geometry of the 6j-symbol (it is nonzero if a tetrahedron can be formed with
6 lengths). won’t integer volumes appear there?

1985-14. Develop the theory of uniform estimates for both oscillatory and expo-
nential multidimensional integrals (Laplace’s method) depending generically on
parameters.
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1985-15. Create either a symplectic or a contact version of Shcherbak’s theory
of H; and H,4, bypassing an obstacle being replaced in it with a general symplectic
construction (similar to the way R. B. Melrose interpreted the billiard problem).

1985-16. Rewrite the Jacobi formulae of the theory of elliptic coordinates for
the infinite-dimensional case (assuming that the spectrum is discrete and the axes
lengths have the asymptotics required for the series to converge).

1985-17. Is the preservation of the intersection form of a singularity of a function
under the stabilizing addition of four squares related to the Bott 8-periodicity?
(Under the stabilization, an 8-fold suspension of the Milnor fiber occurs.)

1985-18. Study the behavior of the mixed Hodge structures under superpositions
of algebraic functions.

1985-19. Is the moment map which sends an n-tuple of points x; < x; < --- < x,,
with given masses m; > 0 into the n-tuple of momentaM; =} mixf-‘ (k=1,2,...,n)
a homeomorphism of a convex polyhedron onto its image?

1985-20. Homotopy classification of nondegenerate homogeneous vector fields
of fixed degree: how many connected components does this space have? For ex-
ample, cubic fields in R>: What is the maximal index of such vector fields?

1985-21. Does the Courant theorem on the zeros of the n-th eigenfunction of the
Laplace operator admit a complexification (provided that the values are complex
and the zeros do not divide the space)?

1985-22. Investigate the topology of the Maxwell set of simple real and complex
singularities; is there a stabilization of cohomology rings of complements?

1985-23. How many Whitney cusped singularities does a generic mapping
5?2 — $2 of degree n necessarily have?
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1985-24. Let an open swallowtail lying in a discriminant (either as a multiple
self-intersection or as an A, /, stratum) be Lagrangian in some symplectic struc-
ture. Classify the extensions of these structures over the entire discriminant,

1985-25. How is the stratification of the univalence boundary in the space of
holomorphic mappings of the disk to the plane organized? Have the strata of small
codimensions and the bifurcation diagrams been described?

1985-26. J. M. Ball’s conjecture: Consider the pyramid inside the swallowtail,
n+1
{x”Jrl +ax 1+ ta, = H(x—xg), X; € R} C R”.
i=1

Restrict it by the condition |a;| < 1. Then for any two points of the bounded do-
main obtained, there is a curve of length less than Cd (d being the distance between
points in R"”) connecting these points inside the domain, where the constant C 1s
independent of the points.

More generally: How can one describe the semialgebraic sets possessing
such property of pseudoconvexity (called the Whitney property)?

1986-1. Consider the space of Lagrangian tori in 7*T? that are isotopic to the
zero section among all the tori. How many connected components does it have?

1986-2. Consider a Hamiltonian in T*T? quadratically convex with respect to
momenta. Suppose that the tori mentioned in the preceding problem lie on its
level-1 hypersurface (deformations are then applied to pairs torus—Hamiltonian).
How many connected components are there in the space of such pairs (topologi-
cally trivial)?

1986-3. A rigid body is controlled by a momentum of a given intensity; the ori-
entation of the momentum with respect to the body (satellite) can be taken as a
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controlling parameter. It is required to turn the body from one state to another
(perform a rotation in SO(3)) as fast as possible, say, at zero initial and final angu-
lar velocity.

Describe the optimal control (first and foremost, the topology of the mani-
fold of the discontinuity of this control on SO(3)).

1986-4. To a purely imaginary pair of a vectorfield’s eigenvalues there corre-
sponds, generally speaking, a Lyapunov invariant surface. Explore the perestroikas
(bifurcations) of these surfaces at resonances.

1986-5. Transfer the Smale-Hirsch theory to the Lagrangian and Legendrian
bands (germs of Lagrangian and Legendrian manifolds along curves belonging to
these manifolds) or to the corresponding framed curves.

1986-6. Is the diameter of the symplectomorphism group of the ball B** bound-
ed? Conjecturally, no. (In the two-dimensional case this was proved by A. I. Schni-
relmann. In the higher-dimensional case, thanks to non-simple-connectedness
of the group of symplectic matrices (T = 7)), one can strongly twist a central
ball, and the corresponding diffeomorphism is conjecturally rather far from the
identity.)

1986-7. Find the asymptotic form of the number of meanders with # — oo bridges.
1986-8. Study the singularities of the apparent contours of convex bodies.

1986-9. In optimization theory, there occur situations where a nonconstant (say,
periodic) control gives better (on average over a long time) results than any fixed
parameter.

Study these situations from the viewpoint of genericity and bifurcations.
The situation resembles a phase transition. Generally, the regime optimal on the
average may be more complex than a periodic one!

1986-10. Reformulate the theorem about three inflection points of a projective
curve and about four vertices of a Euclidean curve in terms of symplectic or contact
topology.
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1986-11. In addition to models with internal degrees of freedom along a small
fiber of a bundle over space-time, models of the surface tension type are conceiv-
able, where the fundamental laws of hydrodynamics act in a larger space but an
observer on the surface only sees their manifestations in a smaller space (the dif-
ference in the dimensions can even be greater than 1). What common features do
the models of this type have—what is the structure of their equations of motion?

1986-12. Study the singularities of the level u = 0 for a function u of two vari-
ables satisfying the (Euler stationary) equation: there exists a function f such that
Au = f(u). Investigate the typical cases and bifurcations of codimensions 1 and 2.

1987-1. Carry over the theory of the Gibbs distribution (for the one-dimensional
evolution u; + (uv)y = €uy) to the case of a discrete time (a map St — Sl close
to the identity, is being perturbed by a small diffusion). What is an analog of the
theory of eigenvalues close to zero that correspond to the point attractors of the
field v?

1987-2. Symplectize the nonoscillation theory (including the Pélya theorem con-
cerning factorization on an interval).

1987-3. The transformation z — z> sends the trajectories of small oscillations to
the Newton ellipses. And what about the transformation z +— z*?

1987-4. Consider hypersurfaces in RP" of constant signature, e. g., of signature
(1,1) in RP? (a compactification of the Hilbert problem on embedding a surface
of everywhere negative curvature into R>).

a) Is it true that the space of such hypersurfaces is connected?

b) Is it true that any such surface separates two lines (in the case of a hy-
persurface of signature (k,1), separates RP* and RP! in RP*++1)? The answer is
positive for k = 0. any convex hypersurface is affine.
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¢) Is it true that any such hypersurface is a two-fold covering of RP* x RP!
(or, better, that the subspaces RP* and RP' separated by the hypersurface can be
chosen in such a way that any line joining them intersects the hypersurface at
exactly two points)? This is true for k = 0: a convex hypersurface is star-like with
respect to any point of the domain bounded by this hypersurface.

d) The “maximum principle”: consider a hyperbolic surface lying in the
strip |z| < 1 in R? and tangent to the cone x* +y> = z° along the circles z = +1.
Prove that the surface does not intersect the interior zZ > x* 4+ y* of the cone. Gen-
eralize to other boundary conditions.

1987-5. Examine the global topological properties of the caustics and fronts of
Legendrian manifolds (and, separately, of optical manifolds; their properties may
be different!).

1987-6. Evaluate 7t3(C"\ X"2), where X"~ is the cuspidal edge of the swallow-
tail. Of course, here also the similar questions in R" and for strata of greater
codimension and higher T; are assumed.

1987-7. How many connected components does the complement of the trail of a
complete flag in a neighborhood of this flag in R” have? There are two for n =2
and six for n = 3.

1987-8. How many connected components are possessed by the complements
of (1) bifurcation diagrams of functions and (ii) discriminants of (at least) simple
singularities in spaces of real versal deformations?

1987-9. Is M. E. Kazarian’s list of the Young diagrams of simple singularities a
solution to some other classification problem?

1987-10. How does the number of critical points of the N-th eigenfunction of the
Laplacian in an n-dimensional domain increase as N — o? Like N1/"9

1987-11. What singularities are encountered in solutions of the variational prob-
lem to minimize the Dirichlet integral [(Vu)? dx over all functions u obtained
from a given one by the action of area-preserving diffeomorphisms of the domain
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(say, of the disk)? If a given function vanishes on the boundary of the disk and
has one maximum inside, then the extremum in the above problem is a centrally-
symmetric function on the disk such that the area of the set where the latter function
is less than a number equals the area of the set where the former given function is
less than the same number. If the initial function has two maxima, similar to the
two summits of Elbrus, and a saddle, then physicists observed in numerical exper-

iments that the extremal function has singularities along the segment replacing the
saddle.

1987-12. Study the decomposition of the space of linear complex equations
with singularities into isomonodromy classes (of special interest are the limits of
isomonodromic systems with merged singular points, namely, their versal defor-
mations, bifurcation diagrams, etc.).

1987-13. Study the degeneracies of symplectic structures in the space of closed
2-forms, namely, the stratification of the boundary of the manifold of symplectic
structures, the bifurcation diagrams at the points of finite-codimensional strata on
the boundary, . ..

1987-14. Do there exist smooth hypersurfaces in R” (other than the quadrics in
odd-dimensional spaces), for which the volume of the segment cut by any hyper-
plane from the body bounded by them is an algebraic function of the hyperplane?
For these quadrics the volume is an algebraic function (Archimedes), and the area
of segments of plane curves is never algebraic (Newton).

1987-15. Define the “asymptotic Sturm invariant” describing the mean La-
grangian oscillations of variational equations for a Hamiltonian system (in the
same sense as the asymptotic Hopf invariant counts the mean number of zeros
(with signs) for solutions to normal variational equations; the latter assertion also
needs be formalized).

1987-16. Study the boundary of the set of second order linear equations with al-
ternating roots of solutions (and carry over the results to the Lagrangian alternation
in Hamiltonian systems with n degrees of freedom). Roots alternation property of
a second order equation means: in the interval between any two roots of any solu-
tion there exists a root of any other solution.



1987-17 The Problems 63

1987-17. Are the transformations of phase flows of contact fields in S° dense
among the contactomorphisms from the identity component?

1988-1. Classify the singularities of contact-Poisson structures.

1988-2. What is the maximum difference between the number of maxima and the
number of minima for an n-th degree polynomial in R?? The same question for
the R-Morsification of singularities.

1988-3. Investigate normal forms of a quadratic cone in the contact space R’
(R’) with respect to C and analytic germs of contactomorphisms at the vertex.

The question is related to the theory of wave transfomation and relaxation
oscillations (see the paper: ARNOLD V. I. Surfaces defined by hyperbolic equa-
tions. Math. Notes, 1988, 44(1), 489-497; the Russian original is reprinted in:
Vladimir Igorevich Arnold. Selecta—60. M.: PHASIS, 1997, 397-412).

1988-4. What is the maximum number of periodic orbits for the diffeomorphism
of S! which is determined by elliptic functions similar to x — x +a + €snx?

1988-5. Find the upper bound for the Hélder exponent of a continuous (“Peano’)
mapping of the square to the cube (is 2/3 attained?). Solved by E. V. Shchepin.

1988-6. Can the number of intersection points of the image of a circle—under
the n-th 1teration of an analytic diffeomorphism of a surface—with another (fixed)
circle grow faster than any exponent of n? Solved by O. S. Kozlovskil.

1988-7. Can the number of periodic trajectories of a real analytic mapping of a
surface to itself grow faster than any exponent of the period?
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1988-8. Can various topological invariants of the intersection (A"X*) N Y’ as well
as the Milnor numbers and other local characteristics of the tangency of germs
(A"X* 0) and (Y*,0), given that A(0) = 0, grow faster than any exponent of n?

1988-9. Prove the stabilization for L — o of the homotopy type of the com-
plement R* \ A, where A is the corresponding stratum of the discriminant A
(of codimension k).

1988-10. Prove the analogous stabilization for complexifications, C* \ “A.

1988-11. Carry over the four-vertex theorem from planar curves to curves on the
sphere SZ.

1988-12. If the Jacobian of a germ of a mapping R? — R? is identically zero, then
the mapping can be factored through a curve as R? — K' — R2. Give a precise
meaning to this assertion (algebraize it); for instance, begin with formal series and
end by C*.

1988-13. Prove that, in R*", there are no (nonconvex) algebraically integrable
hypersurfaces (i. €., the volume of the part cut off by a hyperplane cannot be an
algebraic function of the hyperplane). Proved by Newton for n = 1.

1988-14. Give a formal definition of integrability of a differential equation de-
termined by a vector field on a manifold (the definition must be independent of
the algebraic and similar structures on the manifold, i.e., the integrability prop-
erty must be invariant under diffeomorphisms of the manifold). Prove the non-
integrability in this sense for, €. g., typical Hamiltonian systems close to generic
integrable systems.

1988-15. Transfer the four-umbilical-point theorem from surfaces to the sym-
plectic or contact topology of Lagrangian or Legendrian singularities (prove the
inevitability of D%).

1988-16. The theory of second braids: Consider a hypersurface I'y: z4*! +
APl 4o+ A, = 0 in C**! and a sequence of projections CH*! — C* —
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CH-1 — ... (along the axes z, Ay;Ay—1,...). The discriminant of the projection of
the hypersurface I'y onto CH is a hypersurface I'y in C*. The fundamental group
of the complement of I'; is the braid group.

Let us define recursively hypersurfaces I'y in C*+1-* as the discriminants
of the projections of I'y_; from C**+2-% onto CH+1-%,

Study these hypersurfaces. Are their complements K (7w, 1) spaces? What
are their fundamental groups? Can we describe the fundamental group of such a
complement as the group of “Zariski relations” between Zariski relations in the
preceding fundamental group?

The cases k = 1 (where the braid group is described as a subgroup of the
automorphism group of a free group) and k = 2 (where the fundamental group of
the complement of the bifurcation diagram is described) have been examined, but
the case k = 3 still remains to be studied, even for small .. Though, perhaps, it
would be more in spirit of the description of fundamental groups of the complement
by Zariski relations to replace the given flag of projections by a generic flag (for
our flag, some strata are projected on the same submanifold).

1988-17. Consider the “stochastic web”

{x cR*: icos(x,v,-) = c}

i=1

(where the vectors v; form a regular pentagon). Is it true that the diameters of this
curve’s closed components with interior point O are bounded above?

1988-18. Consider the mapping T = AB of the plane to itself, where B(x,y) =
(x,y+€sinx) and A is the rotation through the angle 2 /5. Consider the closed
invariant curves of 7 bounding a domain with interior point 0. Are their diameters
bounded above?

1988-19. Parametric Morse inequalities for As and other singularities. Consider a
generic smooth function on the space of a smooth bundle (for instance, with fiber
the circle and with two-dimensional base). Over certain points of the base, the
restrictions of the function to the fiber have non-Morse singularities, such as A, on
some hypersurface in the base (on a caustic), A3 on a stratum of codimension 2 in
the base (at certain points of the base in the case of two-dimensional base, namely,
at cusps of a caustic).
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Study the relations between the nontriviality of a bundle (e. g., the differ-
entials in its spectral sequence) and the inevitable singularity strata on the base
(for instance, the minimum number of cusps of caustics when the base is two-
dimensional).

1988-20. Consider a diffeomorphism of the boundary of a manifold to itself,
which extends to a diffeomorphism of the manifold. Can this diffeomorphism
be always extended as a volume-preserving diffeomorphism? What properties of
the diffeomorphism of the boundary guarantee the existence of fixed points of the
volume-preserving extension? Example: S' x D?.

1988-21. Consider a field of directions on S>. Can these directions be includ-
ed in planes in such a way that the obtained distribution of planes be invariant
with respect to the flow of a vector field v of given direction? (3a,p: ajv =0,
do=0oAB.)

1988-22. Consider a field of divergence 0 on S*>. Does there exist a contact
structure in which this field is Legendrian? Or such a structure diffeomorphic
to standard?

1988-23. Transfer the construction of Pontryagin and Thom from cobordism
theory to real algebraic functions. The Serre property for bundles corresponds
to the possibility of covering a typical deformation of the set of real roots of a
polynomial (which can vanish in pairs) by a deformation of the polynomial itself.
The Pontryagin isomorphism between the homotopy groups of spheres and the
cobordism groups of framed manifolds corresponds to the isomorphism between
the homotopy groups of the space of functions with moderate singularities and the
cobordism groups of plane curves without horizontal inflectional tangent lines in
the theory of real algebraic functions in one variable (see ARNOLD V. 1. Spaces of
functions with moderate singularities. Funct. Anal. Appl., 1989, 23(3), 169-177;
the Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta—60.
Moscow: PHASIS, 1997, 455-469). This example suggests that the similari-
ty extends much farther and can be formalized as the corresponding calculus
of singularities. This similarity had first been explicitly mentioned and used in
ARNOLD V. I. Braids of algebraic functions and the cohomology of swallowtails.
Uspekhi Mat. Nauk, 1968, 23(4), 247-248 (in Russian); reprinted in: Vladimir
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Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 125-127, and especial-
ly in ARNOLD V.I. Cohomology classes of algebraic functions invariant under
Tschirnhausen transformations. Funct. Anal. Appl., 1970, 4(1), 74-75; the Rus-

sian original is reprinted in: Vladimir Igorevich Arnold. Selecta—-60. Moscow:
PHASIS, 1997, 151-154.

1988-24. Quadratic forms in the Euclidean space R" having a multiple eigenvalue
constitute a variety of codimension two in the space of all the forms. Can one
represent the corresponding discriminant as the sum of squares of two functions
(polynomials, power series)? This is so for n = 2.

For the Hermitian case, the codimension (and the number of squares?) is
three. For the hyper-Hermitian case of SU(2)-invariant quadratic forms in R*", the
codimension is five.

1988-25. Consider a (possibly, anti-) commutative graded ring (or, better, an R-
or C-algebra) with Poincaré series 1+ 1>+ --- (having one additive generator of
each degree). Classify such rings (algebras) with given degrees of multiplicative
generators,

In the simplest nontrivial case of a commutative ring with three multiplica-
tive generators of degrees 1, 2, and 3, the number of such algebras is 5. In the
general case, it is not clear for what sets of degrees the object is simple (admits no
moduli). presumably, this is always so for three multiplicative generators.

1988-26. The eccentricity of a Hilbert space. Let R(V) be the minimum number
such that N balls of radius R(N) can cover the unit ball in R”, and let »(N) be the
maximum number such that N balls of radius »(N) contained in the unit ball in R”
can be disjoint. As N increases, the ratio R(N)/r(N) = p(N) tends to a limit p
called the eccentricity of the space R”. Examine the asymptotic behavior of the
eccentricity as the dimension » increases. Possibly, lim p = v/2.

n—>oa

1988-27. Let K: T? — R, be an arbitrary smooth positive-valued function on a
Riemannian torus. Consider the motion of a charged particle on this torus in the
presence of a magnetic field K normal to the torus, 1. e., its motion along curves on
the torus such that their geodesic curvatures at each point are a prescribed (for this
point of the torus) positive number K.
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Suppose that the metric on the torus is flat. The motion of the particle
(at velocity 1) is described by a curve in T? = Ty T?. The standard metric deter-
mines a parallelization, namely, the decomposition T> = S! x T?. The positivity
of the curvature K implies that the phase curves on T° are transversal to the fibers
{@} x T?. Thus, we obtain a Poincaré mapping of the fiber {0} x T? to itself. This
mapping is a symplectomorphism homologous to the identity symplectomorphism
for a suitable symplectic structure on {0} x T?.

Prove that such a Poincaré mapping 1s homologous to the identity mapping
also in the case of motion on a torus with an arbitrary Riemannian metric close
to flat.

1988-28. Prove that, in the situation considered in the preceding problem, the
Poincaré mapping 1s homologous to the identity mapping for a motion on the
torus T? with an arbitrary Riemannian metric provided that the geodesic curva-
ture K is sufficiently large.

1988-29. Consider the torus T? with an arbitrary metric and an arbitrary positive-
valued function K on T?. Does there exist a Poincaré mapping or even a surface
transversal to the vector field of the motion of a charged particle on T? in the
magnetic field K and isotopic to a section of the bundle 7;T? — T?2?

1988-30. Prove the existence of the expected number of closed trajectories of
the motion of a charged particle in a magnetic field on an arbitrary surface, at
least in the cases where the field K is sufficiently strong or where the metric is
close to that of constant curvature. I believe that it is expedient to directly apply
the “hyperbolic Morse theory” rather than to reduce the problem to examining
fixed points of a symplectomorphism. In the case of a sufficiently strong magnetic
field K, this conjecture is proved: the number of closed orbits is not less than 2g + 2
on surfaces of genus g; cf. problem 1994-14.

1988-31. Generalization of the preceding problem: Consider a nontrivial bundle
M3 — N? with fiber S! endowed with a connection (specified by a field of two-
dimensional planes transversal to the fibers). Let T denote some volume element
on M?, and let v be a divergence-free (with respect to T) vector field transversal
to the plane of the connection. Is the number of closed orbits of such a vector
field bounded below by the minimum number of critical points of functions on the
surface N? (supposed to be an oriented surface without boundary)?
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1988-32. A special case of the preceding problem: Is it true that an arbitrary
divergence-free vector field on S® making an acute angle with the Hopf field at
each point has at least two geometrically different closed orbits?

1989-1. Classify the simple singularities of functions on supermanifolds.

1989-2. Can the number of fixed points of the n-th iteration of an infinitely
smooth mapping of a compact manifold to itself grow, as n increases, faster than
any prescribed sequence a,, (for some subsequence of time values n;)?

1989-3. Calculate m;(the complement of the stratum A; of the swallowtail in R")
for non-stable dimensions #.

1989-4. Study the cohomology rings of the complements of bifurcation diagrams
of functions A; in C¥~! (including the stabilization as k — oo, the behavior under
the Lyashko—-Looijenga mapping, and the relation to stratum diagrams). This is the

cohomology of the “second braid group,” because the complement of a bifurcation
diagram in C*=1 is K(m, 1).

1989-5. What functions on manifolds can serve as Jacobians?

1989-6. Give a relative version of the Moser theorem on symplectic structures
(fix a submanifold and a 2-form on it).

1989-7. Carry over the inequalities of Harnack, of Petrovskii, etc. to the pseu-
doperiodic hypersurfaces determined by sums of (incommensurable) harmonics
of the form Acos{((k,x) +a) in R" (study the densities of topological objects in
unit volumes). For instance, we can divide by R" the number of maxima, or the
Betti numbers, or the Euler characteristic of the domain f < c in a large ball
of radius R and send R to infinity; it is required to estimate the limit “density of
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maxima,” or “density of Betti numbers,” or “density of the Euler characteristic”
from above in terms of the number of harmonics (or, if possible, of the Newton
polyhedron).

1989-8. Nonconvex Minkowski problem. Given a generic mapping S* — S? of
degree 1, consider its Jacobian as a (set-valued) function on the image sphere.
What conditions on this function ensure the existence of a Gauss mapping (of a
sphere immersed in R?) with such a Jacobian?

In the absence of singularities, the only condition is that the center of grav-
ity of the corresponding mass distribution on the sphere should be at zero (the
Minkowski theorem).

1989-9. Classify the flags in a symplectic space and simple symplectic quivers.

1989-10. Study the systems of fronts and of rays defined by hyperbolic varia-
tional principles near typical singularities of the surface of zeros of the symbol
(for two- and three-dinensional physical spaces).

1989-11. Classify the neighborhoods of Riemann curves of genus g on complex
surfaces. The case of an elliptic curve, g = 1, is studied in detail, e. g., in the
following book: ARNOLD V.I. Geometrical Methods in the Theory of Ordinary
Differential Equations, 2nd edition. New York: Springer, 1988 (Grundlehren der
Mathematischen Wissenschaften, 250); the Russian original 1978.

1989-12. The infinitesimal version of the problem about periodic orbits of cor-
respondences: Let A : S! — S! be a diffeomorphism of a real oval for an algebra-
ic curve such that its analytic continuation 1s a correspondence on a Riemanni-
an surface and A¥ = id. How many periodic orbits (of period n) can arise under
a small perturbation of this diffeomorphism (in the class of real algebraic self-
correspondences of the same bigenus and bidegree)? Is this number bounded by
a function of » of by a constant independent of »n (uniformly over perturbations or
at least in the first approximation of perturbation theory)?

1989-13. In the problem of bypassing an obstacle, examine the asymptotics as
the obstacle diffuses and turns into a steep potential.
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1989-14. In the space of polynomials R" = {x"*! 4 qx*~1 + ... +a,}, consider
the subvariety A3 (of codimension 2) consisting of the polynomials with three-
fold roots. The fundamental group of the complement of this subvariety is Z. The
polynomial in two variables X! +a; (y)x" 1 +.. . 4a,(y) naturally defines a curve
in R". A generic curve does not intersect the subvariety A3. Fixing the boundary
conditions for y — o0, we can associate with such a curve an integer [an element
of w1 (R" \ A3) ~ Z] called the index and counting the number of rotations of the
curve around Aj.

Find the minimal degree of the polynomial in two variables (or of polyno-
mials a; in y) for which a given value i of this index is realized.

Investigation of this question led V. A. Vassiliev to the problem on the min-
imal degree of a polynomial mapping R — R realizing a fixed knot. The inves-
tigation of the arising knot invariant led him to the theory of invariants of finite
order.

1989-15. What is the maximum number of parts into which the sphere can be
divided by the zeros of a spherical function being a polynomial of degree n?

The well-known Courant theorem gives the upper bound of n* /2 + O(n)
(for the 2-sphere), and examples of V.N. Karpushkin give the lower bound of
n%/4+ O(n).

What is the largest number of maxima for such a function?

1989-16. Find the number of components in the space of nondegenerate homo-
geneous equations x = P(x), where x € R" and the components of P are second-
degree homogeneous polynomials having no common zeros but the origin.

The geometric problem (for n = 4) reduces to studying deformations of
quadruples of quadrics (ellipsoids) in the projective space. The quadrics are al-
lowed to degenerate and even vanish, but they are forbidden to have a point com-
mon to all of them. The question is, how many quadruples are there that cannot
be so deformed into each other? (For n =3, triples of ellipses should be consid-
ered; in this case, the answer is 2: the ellipses from one triple are disjoint, and in
the other triple, each ellipse separates the two intersection points of the two other
ellipses.)

1989-17. How many limit cycles can arise under a small polynomial (of degree n)
perturbation of an integrable polynomial system of degree n?
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The question reduces to exploring the number of zeros of the integral

Pdx+Qd
1(h)=j£ xMQ y

along ovals H = h of the system x = X (x,y), y =Y (x,y) with integrating factor M,
where X, Y, P, Q are polynomials of degree n. It is unsolved even for n = 2 and
even in the case M = 1 where H is a polynomial. In the case where M = 1 and
H, P, Q are polynomials of a fixed degree, there is a uniform upper bound for the
number of zeros (A. N. Varchenko, A. G. Khovanskii) but it is ineffective.

1989-18. The sequence of meandric numbers 1, 1, 2, 3, 8, 14, 42, 81, ... is
defined as follows. Suppose an infinite river running from south-west to north-east
intersects an infinite straight road going from the west to the east under »n bridges
numbered 1,...,n in the order from west to east. The order of the bridges along the
river determines a meandric permutation of the numbers 1,...,n. The meandric
number M, 1s the number of meandric permutations on # elements.

Meandric numbers possess many remarkable properties; for example, M,
is odd iff n is a power of 2 (S. K. Lando). Find the asymptotics of M, as n — oo,
It is known that c 4" < M, < C16" for some constants c, C.

1989-19. Is it true that the minimum Hausdorff dimension of a minimal attractor
of the Navier—Stokes equation (on the 2-torus, say) increases with the Reynolds
number?

Even the existence of some minimal attractors of dimensions growing with
the Reynolds number is not proved, only upper estimates for the dimensions of

all attractors by powers of the Reynolds number (obtained by Yu. S. Il 'yashenko,
M. 1. Vishik, and A. V. Babin) are known.

1989-20 (V. P. Kostov). Describe the singularities of the pseudo-Stokes hypersur-
face of a typical family of polynomials. The pseudo-Stokes hypersurface of the
family of polynomials x* + a1 x* >+ --+a,_1 (x, a; € C) is the set of values of the
coefficients a; for which two of the roots have the same real part.
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1990-1. Let A: (C2%,0) — (C?,0) be a germ of a mapping of finite multiplicity
holomorphic in a neighborhood of 0. Let also X and Y be complex straight lines (or
holomorphic curves) passing through 0. Let 1L denote the intersection multiplicity.
Is the multiplicity L(A"X,Y) majorized by an exponent of n? All the multiplicities
W(A"X,Y) are assumed to be finite.

1990-2. Translate the classification of umbilical points into the language of sym-
plectic toplogy of Lagrangian singularities (possibly optical) and at least formulate
conjectures on their topological necessity.

1990-3. The caustic of a point on the convex sphere S* (the manifold of points
conjugate to the initial point along the geodesics from this point) is naturally par-
titioned into connected components (of its preimage in the tangent space at the
initial point under the geodesic exponent mapping). We can partition it into the
first caustic (generated by the first conjugate points), the second, and so on.

Can we divide the caustic of a point on §? (or §*) into infinitely many con-
nected components? For example, under a sufficiently small perturbation of the
standard metric of the sphere $3, the first N components having the form of a dou-
ble sphere S? apparently give precisely N connected components, each consisting
of two copies of S? attached to each other at several (how many?) conic points (of
type D4). But it is not improbable that, starting with some (very large) N, these
two-sphere components begin to merge (I know no examples!) or even form in-
finite chains (all the more, no examples!), even if the perturbation is very small.
Maybe, it is easier to obtain examples on S” rather than on S3 [when each pair of
spheres S? is replaced by n— 1 copies of "~ 1; by the way, the precise arrangement
of the D4-point bridges connecting these copies (note that the D4 points form a set
of codimension 2 on $"~!) is not calculated even in the framework of the first ap-
proximation of perturbation theory; this question is apparently related to caustics
(focal sets) of ellipsoids in R*].

1990-4. A hypersurface in RP" is k-quasiconvex if, at each point, its second
quadratic form has constant signature {k,/}, where k +1 = n— 1 (the set {k,!} is
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not ordered: the hypersurfaces are not co-oriented and may be non-co-orientable!).
For k = 0, this is the usual convexity.

Is it true that any (connected) k-quasiconvex closed hypersurface embed-
ded in RP" is disjoint from certain subspaces in RP* and RP! (this is so for k = 0)?

1990-5. What topological invariants of a submanifold in a Euclidean space do
admit an upper bound in terms of the complete absolute curvature (the volume of
the manifold of tangent planes of this submanifold in the Grassmannian bundle
over the Euclidean space)?

The sum of Betti numbers can be estimated, and so can the Morse num-
ber, while the lengths of relations in the fundamental group, apparently, cannot!
It seems that the set of admissible homotopy types of submanifolds whose complete
curvatures fall in a fixed range is infinite (at what (co)dimensions of the submani-
fold and the space?).

1990-6. Prove that a typical Hamiltonian system on the torus with pseudoperiodic
Hamiltonian ap + bg + (periodic function) having critical points involves mixing.
Solved by K. M. Khanin and Ya. G. Sinal.

1990-7. Consider a family of analytic diffeomorphisms x — x+a+ bf(x) of the
circle, where f is a periodic function. Is the multiplicity of periodic points arising
at infinitely small 5 bounded (uniformly with respect to a)?

1990-8. Two conducting (k-dimensional) surfaces with potential difference 1
move toward each other (in R") until the distance between them becomes € (the
charge distribution is electrostatic). Determine the asymptotic behavior of the
force of attraction between the surfaces in terms of the singularities of their tan-
gency at € = 0 (for a pair of cylinders in R, this is a problem of A. D. Sakharov).

1990-9. Give a precise meaning to the assertion (of M. Berry) that the asymp-
totics of an oscillatory integral, after all terms polynomial in the wave length are
subtracted, exhibits exponentially small “jumps” of the universal form erf.

1990-10. Make a precise sense of the statement (due to V.V.Fock) that the
asymptotics of slowly decaying eigenfunctions in the problem on small diffu-
sion in a potential dynamical system with several attractors [u; + (uv), = €Au,
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v = —gradU] have “yumps” of the universal form erf at the borders of the attractor
basins.

1990-11. Give the exact meaning of the statement (of A.D. Sakharov) affirming
that the average number of vertices of the polygonal pieces, into which a planar
domain is divided by many lines, is equal to 4. Generalize it to the multidimen-
sional case. According to F. Aicardi, the mean number of faces of any dimension
of the pieces in R" is the same as for the n-dimensional cube. But a rigorous
probabilistic proof seems to be lacking.

1990-12. Consider the manifold of non-negative functions on a manifold M.
Study the singularities of this manifold (stratification, stabilization, bifurcation di-
agrams, homological properties of the stratification, reconstruction of M). A gener-
ic point of the boundary is a function with a single Morse minimum. The manifold
of such functions is fibered over M with a contractible fiber.

1990-13. Study the singularities of the boundary of the manifold of contact struc-
tures on a (three-dimensional?) manifold and of the boundary of the manifold of
contact forms for a given structure.

1990-14. The “Hopf invariant” [ o Ada or [ oA (da)” on a contact manifold
does not require the condition H2 = 0 or ©y = 0. Therefore, on a contact mani-
fold, one can try to define a Morse-Floer type complex in a non-simply-connected
and/or higher-dimensional case, hoping to get an invariant of the contact structure.

1990-15. Does the signature of the Milnor fiber of a function in C? has an ex-
pression in the form of an integral over the 3-knot of a singularity? Can we “drag
over” p; to this 3-manifold (possibly, with the use of its contact structure)?

1990-16. Which of the knot invariants can be “diffused” to invariants of diver-
gence-free vector fields (and, apparently, of Legendrian fields on a contact man-
ifold)? Can one calculate the “linking” of diffused Legendrian submanifolds in
higher dimensions?

1990-17. Let f: M"™ — S" be a smooth mapping of a closed manifold to the unit
sphere in R”*!, and let T be the volume element on M. Under what conditions does
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there exist an immersion i : M" — R"*! such that f = goi, where g is the Gauss
mapping, and T coincides with the volume element of the Riemannian metric on M
induced (via the immersion i) by the Euclidean metric on R**!?

1990-18. Find the group m2(Gg) = m2(Gg), where G, is the space of real polyno-
mials x* +a;x* "% + - - - +a,_1 having no real roots of multiplicity higher than 2.

1990-19. Let X be one of the types of critical points of holomorphic functions
which forms a set of codimension & in the space of functions in k variables. By an
inflection point of type X of a hypersurface in a projective space we shall mean a
point at which the pair (hypersurface, its tangent hyperplane) is diffeomorphic to
the pair (graph of the function, its tangent hyperplane) at a critical point of type X.
Let also Y be a type of critical points of functions in k4 1 variables. Find the
number of inflections of type X on a level hypersurface of a generic function of
type Y (in k+ 1 variables) “vanishing” (i. e., merged) at the critical point.

1990-20. Let f be a germ of a C*-mapping of a real space onto itself at a fixed
point of finite multiplicity. Assume that this point is a fixed point of finite multi-
plicity for all the iterations f" of the mapping f. Is it true that the multiplicity of
this fixed point for the iteration f” is majorized by some exponential function ae?

1990-21. Is it true that the number of isolated cycles of periods < T of an ana-
lytic vector field on a compact manifold 1s majorized by some exponential func-
tion ae’?

1990-22. Describe the neighborhoods of Riemannian spheres in holomorphic
surfaces with positive self-intersection numbers.

1990-23. An algebraic correspondence of an algebraic curve to itself is an alge-
braic curve in the Cartesian product of the initial curve with itself. The discrete
invariants of such a correspondence are the genus of the initial curve, the genus of
the correspondence, and the “bidegree” of the correspondence (1. €., the intersec-
tion numbers of the correspondence and the factors). Suppose that a correspon-
dence 1s the graph of a diffeomorphism of the circle in a real domain. Is it true
that the number of isolated cycles of this diffeomorphism is bounded above by a
constant depending only on the aforesaid discrete invariants?
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1990-24. How large can the number of isolated zeros of the complete Abelian
integral

I(h) = jén, (Pdx+Qdy)

be, where v, is a closed component of the level curve {(x,y) : H(x,y) = h}, if
P, Q, H are polynomials of given degrees?

1990-25. Let g be a natural number > 2 and U(x) a fixed polynomial of degree
2g + 2. Consider the family of hyperelliptic integrals of the first kind,

I(h) = j{[h P(Tx) dx,

where 7, is a closed component of the level curve {(x,y) : y¥* + U (x) = h}, and P(x)
an arbitrary polynomial of degree < g. Is this family of integrals a Chebyshev one
(i. e., is it true that for any P the number of isolated zeros of the function 7 1s
at most g — 1)?

1990-26. A full flag in R" consists of vector subspaces
{0} =VoCcViC---CV,=R"

of all dimensions. Two flags are called transversal if their constituent subspaces
of complementary dimensions are transversal. The set of flags not transversal to a
given flag is called the trail of this flag. Find the number of connected components
into which the trail of a flag divides a neighborhood of this flag.

1990-27. An ovaloid in R” (that is, a closed hypersurface bounding a convex
body) is said to be algebraically integrable if the volume cut off by a hyperplane
from this ovaloid is an algebraic function of the hyperplane. Do there exist alge-
braically integrable smooth ovaloids different from ellipsoids in R” with odd n?

1990-28. Since Poincaré, a “nonintegrable dynamical system” is usually under-
stood to be a dynamical system having no analytic first integrals. However, we can
suggest a number of other meanings of the term non-integrability, such as

1) the absence of invariant hypersurfaces (principal ideals),

2) the absence of invariant closed 1-forms (multivalued first integrals),
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3) the absence of invariant distributions of tangent subspaces (invariant
Pfaffian modules),

4) the absence of invariant foliations (invariant completely integrable Pfaf-
flan systems).

Consider a dynamical system with discrete time (a diffeomorphism on a
compact manifold) and an object of one of these types (function, ideal, closed
1-form, ...). The images of this object under the iterations of the diffeomorphism
can form a finite set (if they are periodically repeated) or an infinite set, and they
can generate a finite- or infinite-dimensional space. These properties reflect the
“degree of chaos” in the dynamical system. Prove the non-integrability (in the
sense of each of the four definitions given above) of all dynamical systems from
some open set in the space of dynamical systems on manifolds of sufficiently high
dimension.

1991-1. Consider the rotation field of a three-dimensional ball around an axis.
Is it possible to decrease its energy to arbitrarily small values by acting on this
field by volume-preserving diffeomorphisms? Sakharov’s conjecture (1973): it is
possible for this field, but not for a field with at least one knotted trajectory or with
at least one pair of linked trajectories.

1991-2. The Bernoulli-Euler sequence (1, 1, 1, 2, 5, 16, 61, 272, 1385, ...) gives
the numbers of topologically different Morsifications of the singularities A, (i. e.,
the numbers of connected components in the complements of their bifurcation
diagrams). What is the nonformal complexification of this theory? The nonformal
complexification of Ty is Uy. Therefore, the answer is apparently the Lyashko—
Looijenga covering.

1991-3. Consider the recurrent sequence of degree n (say, 3)
xm+n:a1xm+n_1+"'+anxm (m:(),l,z,...).

Suppose that the number of zeros among the x; is finite (the sequence is then said
to be nonresonant). How many zeros can there be? Is their number bounded for a
given n’
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1991-4. Study the singularities of the manifold of normal operators.

1991-5. Study the singularities of the exponential mappings of Lie algebras
(at least, of the matrix algebra) to groups (including the stratifications of singu-
larity manifolds and uncovered parts of the groups, stabilization, local and global
homotopy and homology groups of the complements of uncovered sets).

1991-6. Do the open umbrellas possess the Petrovskii M-property (do the sums
of Betti numbers of their complements in the real case equal those in the complex
case)?

1991-7. Does the manifold of singular n-th degree polynomials in two variables
possess the Petrovskii M-property? Singular = having less than (n — 1)? different
critical values.

1991-8. Consider a linear operator A : C" «— and two planes X and Y of comple-
mentary dimensions. Describe explicitly the conditions guaranteeing the existence
of infinitely many integers n such that the space (A"X)NY is of positive dimension.

1991-9. Construct a theory of connections with singularities. Deform (in the
sense of some equivalence) a given connection into a connection which is flat
almost everywhere and its all the curvature is concentrated on a certain special
submanifold. Then extract the invariants from the combinatorics of these singular-
ities (and, possibly, from the “residues” of the connection at the singular points).

1991-10. Is it true that a (smooth) pseudoperiodic curve in R? has only one un-
bounded connected component? Negatively solved by D. A. Panov.

A pseudoperiodic curve is defined as the preimage of a point under a pseu-
doperiodic mapping f : R® — R?, where f = (linear) + (Z>-periodic) and the in-
commensurability conditions ker(linear) = R, ker(linear) NZ> = {0} hold (they
almost always hold).

1991-11. Consider the convex hull of the set of integer points in the pyramid
z>ax-+by, x>0,y > 0(a, b are arbitrary positive numbers). Examine the asymp-
totics of the polyhedral surface bounding this convex hull (for example, the mean
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number of edges in a vertex or on a face, the mean number of integer points on an
edge; the probability that a random face is a triangle, a quadrangle, ... ).

Generalize Gaussian distribution of continued fraction elements by trans-
ferring it to trihedral (general?) pyramids in the space R> containing 7Z7. In this
situation, prove the multidimensional generalization of Lagrange’s theorem on the
periodicity of continued fractions: topological periodicity is present if and only
if planes are eigenplanes of a lattice-preserving operator. The two-dimensional
case shows that the boundary of the convex hull should be colored (where colors
correspond to affine SL(2,7Z)-types of stars of vertices or generalized r-stars con-
taining vertices connected to a given one by a path of at most r edges). In the
two-dimensional case, 1-stars determine integer-valued angles of the boundary
polygonal line; these, together with integer-valued edge lengths, are the elements
of the continued fraction. The generalization of Lagrange’s theorem to dimen-
sion 3 states that the topological periodicity of the coloring implies the pyramid’s
provenance from the eigenplanes of an SL(3,7Z) operator.

1991-12. Consider bundles whose fibers are surfaces, namely, the Milnor bundle
for the A, singularities of a function in two variables or the tautological bundle over
the moduli space of curves of given topological type. The fundamental group of the
base is represented by automorphisms of homology groups of the fiber (by means
of the monodromy). Can it be represented directly into the group of diffeomor-
phisms (rather than of their isotopy classes)? A similar question can be asked for
higher dimensions and symplectomorphisms.

In the case of A1 and symplectomorphisms, the answer is affirmative for
all dimensions: there are the symplectic Dehn twists. In the case of Ay and curves,
there also exists an explicit construction. According to V. V. Fock, there is no rep-
resentation into the homeomorphisms of a fiber for the A4 curve singularities.

1991-13. Examine the topological properties of the manifold of the Legendrian
curves (immersed or embedded) disjoint from a given Legendrian knot (find its
fundamental group and cohomology).

According to A. B. Givental, the space of all Legendrian submanifolds is
similar to.a Lagrangian Grassmannian, and the submanifold of those intersecting
a given submanifold is similar to the trail of a Lagrangian plane (formed by the
Lagrangian planes intersecting it nontransversally).
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1991-14 (S.P.Novikov). A submanifold of the Euclidean space R" is called
27 -periodic if it is invariant under translations by the vectors of some integral
sublattice Z" C R". Consider a generic irrational (affine) planar section of a
73 -periodic surface (Fermi-surface) in R3. Is it true then that every unbounded
component of this curve lies in the R-neighborhood (with a finite R > 0) of some
straight line?

1992-1 (B. Teissier). Consider a function f in R” with a critical point of index
zero. Is it possible to change f in an arbitrarily small neighborhood of this point
so that the critical point disappears?

Suppose that the critical point of index zero has finite multiplicity. Is it
true that there is a function in the class of versal deformations of f without critical
points?

1992-2. Study the natural action of the braid group on the manifold of full flags
and on the spaces of their cotangent bundles, which arises from the coadjoint repre-
sentation of the group SL{n,C). Construct a monodromy and variation theory for
non-isolated singularities which takes into account the tower of boundary condi-
tions near strata of various dimensions intersecting the boundary of a ball centered
at the point under consideration (instead of the condition that the monodromy is
fixed on the boundary of the Milnor fiber).

The obtained theory must apply to the mapping that assigns characteristic
polynomials to matrices. It must generalize the Brieskorn—Grothendieck descrip-
tion of simple singularities for the A, D, E surfaces over nonquasiregular elements
of Lie algebras (thus, the theory must apply to the family of four-dimensional in-
tersections of general orbits with the local transversal to the corresponding non-
general orbit).

1992-3. Study the analytic continuation of elliptic curves embedded in the orbit
space of a holomorphic mapping of a complex curve to itself. What singularities
does the continuability boundary have? How large is this boundary (and the corre-
sponding Riemannian surface)? For instance, for the mappings 7 — 7+ ® +€8inz
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and 7 — 7+ O+ €€, where z € C mod 2%, we should consider continuation with
respect to the parameters ® and € such that € = 0 and Im® # 0 [in this case,

the curve is C/(21Z + 0Z)].

1992-4. Draw the discriminant of the family of odd polynomials x” +ax> + bx> +
cx. Study the topological properties of this discriminant (such as the fundamental
group, the number of components in the complement, stabilization, cohomology,
etc.) in the R and C cases.

1992-5. Consider several elements ay,...,a; (e. g., with kK = 2) in the semigroup
of germs of holomorphic mappings (or formal series) from (C,0) to itself [from
(CV,0) to itself]. Compose all words s of length » from the letters a;. Suppose that
every equation s(x) = x has a root of finite multiplicity (s) at zero. Consider the
maximum M (n) of this multiplicity over all (nontrivial) words s of length n. Can
the function M (n) grow faster than an arbitrary prescribed function A(n) as n — oo
(at least, on some subsequence of the »n values) under a suitable choice of a;’s?

Or, maybe, we always have M(n) < Cn or M(n) < Ce™ with a constant C
(depending on a;) for analytic a;7 It is natural to ask similar questions about
infinitesimal maps, that is, germs of vector fields at a point. It is then reasonable
to compose words from multiple Poisson brackets of given fields (or even from their
sums and differences) and estimate the order of zero in the field obtained.

All these problems, which are nontrivial even on the straight line (N = 1),
arise in studying bifurcations of limit cycles in relation to the Hilbert 16th problem,
which is, in particular, concerned with estimating their number.

1992-6. The Milnor fiber (say, of a simple singularity) has a natural symplectic
structure (originating from the coadjoint representation). The vanishing cycles c;
are Lagrangian. Is it possible to represent the covanishing cycles (var~! ¢; € H*) as
Lagrangian submanifolds of the Milnor fiber such that their boundaries are Legen-
drian in the natural contact structure of the singularity knot? Can the intersection
matrix (or even variation) of the Milnor fiber be described in terms of the obtained
Legendrian link?

1992-7. Write explicitly an analytic (polynomial? trigonometric polynomial?)
vector field without singular points in R’ such that its smooth manifold of tra-
jectories is homeomorphic but not diffeomorphic to the standard 4-space R*.
Such a manifold is called a “fake” space R*.
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1992-8. The double factorial appears as an answer in the classification problem of
symplectic flags and in the list of Vassiliev diagram in knot theory. Is there a direct
map, associating a symplectic flag to a diagram or a knot? A natural symplectic
structure on the space of knots (and even on the space of immersions with double
points) does exist (J.-L. Brylinski): a curve representing a knot can be regarded as
a point of a degenerate coadjoint orbit of the hydrodynamical group SDiff(R?).

1992-9. Does the Goresky—-MacPherson theory of perverse sheaves have a dis-
tributed version where the constraints are imposed on ranks of chains with respect
to the symplectic (contact) structure (or merely to the distribution) everywhere
rather than only at the points of stratification?

It is easy to invent a lot of definitions for, say, curves or surfaces in a
symplectic or contact space (they are more likely to lead to cobordisms rather
than to homologies, but we might try to set conditions at singular points too). The
versions are so numerous that we need a rule for selecting suitable definitions.

1992-10. Calculate the moduli spaces of germs for hyper-Kihler structures; are
their Poincaré series almost always (except for spaces of germs of infinite codi-
mension) rational functions?

1992-11. Consider the Navier-Stokes equation (say, on the 2-torus) with external
force proportional to the viscosity (Kolmogorov’s model). Is it true that, as the
viscosity tends to O (i.e., the Reynolds number grows), there appear attractors
of dimensions increasing with the Reynolds number (and containing no smaller
attractors)?

Is it true that, moreover, the minimum dimension of all attractors unbound-
edly increases with the Reynolds number?

A. N. Kolmogorov suggested (in 1958) that the answer to the first question
was affirmative, but he doubted that so was the answer to the second because of
the experiments on delaying loss of stability.

1992-12. Prove exponential upper estimates (with probability 1) for topological
invariants of the intersections (A"X) NY in the case where A is not a diffeomor-
phism, as in the note ARNOLD V. I. Dynamics of complexity of intersections. Bol.
Soc. Brasil. Mat. (N. S.), 1990, 21(1), 1-10; the Russian translation in: Vladimir
Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 489-499, but an arbitrary
smooth mapping.
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1992-13. Prove exponential upper estimates (with probability 1) for the number
of periodic trajectories of period » of a typical diffeomorphism (or a smooth map-
ping of a manifold to itself).

1992-14. Does there exist, for any increasing sequence of positive integers
a, — oo, a polynomial vector field on R™ (entering the spheres {|x| = r > 1}),
which has more than a, periodic orbits of periods < n; for some increasing
sequence n; — oo (provided that all the periodic orbits are nondegenerate)?

1992-15. How large can the set of elliptic curves in the space of orbits of a poly-
nomial vector field (or of a polynomial mapping, or of an algebraic correspondence
with fixed discrete invariants, such as genera or degrees) be?

1993-1. Carry over the theory of neighborhoods of elliptic curves in holomor-
phic surfaces to pseudoholomorphic surfaces (develop theories of normal forms,
resonances, bifurcations, series divergence, ...).

1993-2 (G.Moore). Is there a relation between the invariants J=, St of plane
curves and polynomials in the areas of the components of curves’ complements
and their exponents arising in the theory of dual asymptotics of multiplicative
integrals over Wilson loops (V. A.Kazakov, Yu. M. Makeenko, ...)? Solved by
M. B. Polyak in 1997.

1993-3. Study the surface of changing four vertices for six in general families of
curves f,5(x,y) = ¢ on the Euclidean plane with parameters a, b, ¢ such that, at
a = b =0, the function f has critical point of minimum ¢ with symmetric second
differential K(dx? +dy?).

The supposed answer: a “dish” whose horizontal section has the form of
a six-vertex hypocycloid and vertical sections through the axis are parabolic. But,
more likely, there are functional moduli.
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1993-4. Study vanishing flattenings in general families of curves in C" given as
preimages of a general mapping f: C* — C"~!. Find the numbers of vanishing
flattenings, bifurcation diagrams, and so on.

Certainly, the normal form of the mapping f does not give an answer by it-
self: the preimage should be subjected to a general diffeomorphism. For instance,
at n = 2, the normal form f = xy gives no planar points on the curve xy = ¢ # 0.
The correct (Pliicker) answer —6 vanishing inflection points—is only given by the

equivalent mapping [ = x> —y* =y

1993-5. Find all weight systems of multiplicative generators of a commutative
N-graded C-algebra with the simplest Poincaré series 1 +¢+4t>+ - - -, for which the
classification of such algebras with respect to a) isomorphism of algebras, b) iso-
morphism of graded algebras is simple (has no modules).

For three generators, and any weights 1 < u < v, the number of algebras
is 2(a1 +ax+---) + 1 where v/u = ap+ 1/a; + --- is a continued fraction. In
the case of four generators, there are Sturmfels’ examples of a nonsimple weight
system, for instance, (1,3,4,7), (1,3,4,9), (1,4,5,6). Unfortunately, the complete
list of weights for which there are no modules is unknown even for 4 generators.

1993-6. Describe the Fintushel-Stern numbers related to the Floer numbers of
quasihomogeneous knots of homology 3-spheres in terms of Newton polyhedra
(admitting a multidimensional generalization).

According to FINTUSHEL R., STERN R.J. Integer graded instanton ho-
mology groups for homology three-spheres. Topology, 1992, 31(3), 589-604, the
Poincaré polynomials of the Floer homology of the manifolds x° + y? +y¢ = 0,
x|2 + [y]? + |z)* = 1 have the form

235 t+¢P 237 t7 144

2311 t+83+£+17 2313 t7 1448248
2317 t+£23+202+t"+¢° 2319 2t 'y 28348
2323 t+203428 +247 4411 2325 27142t 4263 42¢°

2329 t+8+355+27+209+111 2331 2142843831265 447

1993-7. If the class of a plane curve (the orbit of a typical immersion S! — R?
under the action of the groups of orientation-preserving diffeomorphisms of S!
and R?) is symmetric (invariant) with respect to a symmetry (reflection of S or R2,
or both), then this class has a representative which is a symmetric curve (instead
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of the diffeomorphisms, we can take the second-order isometries; they transform
the immersion into itself).

A similar assertion is valid for atypical curves, that is, for various other or-
bits or strata of the manifold of immersions. But in different cases (it seems, even
for curves in R>), there occur symmetric classes without symmetric representa-
tives. Is there a simple criterion for the existence of such symmetric representatives
(in the classification problem for maps, immersions, embeddings, . ..)"

1993-8. Vanishing Chern classes. In addition to vanishing inflections, we can
consider other, non-point, strata of singularities on the dual hypersurface. They
correspond to (singular) submanifolds of the initial hypersurface with various di-
mensions enumerated by the types of critical points of functions. The germs of
these submanifolds at a singular point determine their infinitesimal analogues in
the local ring of the singularity. The problem 1s to give an algebraic description
(e. g., in the form of a flag or quiver of 1deals in the local ring) and calculate the dis-
crete invariants of the obtained algebraic objects for each singularity of the initial
hypersurface.

1993-9. Can we join the curves ' and X in the class of fronts of the Legendrian
immersions in ST*R? having two (or having at most two) cusps?

1993-10. Consider two plane immersed curves in the same J* class. Join them
by a generic path in the space of immersions, along which no perestroikas J*
happen (i. e., no equally oriented self-tangencies). Consider the minimal number
of the (other) perestroikas on such a path. Is this number bounded by a constant
depending only on the complexity (the number n of double points) of the initial
curves? If yes, how does this function grow with n? May be, it is not computable
because of its growing faster than any computable function?

Is the problem of determining whether two curves belong to the same
J*-component algorithmically solvable (probably, not)?

Similar questions arise for all classification problems considered at the
seminar, for example, for St-classes, for fronts, for fronts with a fixed or an upper
bounded number of cusps, etc.

1993-11. Do the periodic continued fractions satisfy the Gauss statistics for the
elements? For instance:
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A) One can consider random matrices in SL(2,7Z) orin GL(2,7Z) in a large
ball of radius R, expand them in continued fractions, and explore

a) the statistic of the elements of these periodic fractions;

b) the statistic of the period length.

Does the limit of the distribution as R — oo exist, and does it coincide with
the Gauss distribution? Is this limit the same for any homothetically widening
domains in place of balls?

B) One can also consider random trinomials A% + a\ + b (with real roots)
in the domain a? + b* < R? in Z? and explore the statistics over these trinomials
(one may also use other domains, e. g., |a| <R, |b| <R).

C) One can even start with rational fractions p/g, expand them in continued
fractions, and try to calculate the limit of the statistics for p2 + q2 < R* R — oo
again, one may replace the disks with other domains. Conjecturally, the answer
is independent of the shape of the domains and, in all the cases, it is the same, as
the Gauss invariant measure of the endomorphism x — 1 /x — [1/x] of the interval
(0;1) into itself indicates.

1993-12. Describe the action of the braid group (and of its subgroups correspond-
ing to various non-isolated singularities of fibers) on the homology of generic or-
bits, i. e., of the manifold T*F, | (F,, is the space of full flags in C**1), specified
by the coadjoint representation A, = SL(n+ 1,C):

manifold C"'+2 5 nonsingular fiber ~ T*F,
of (n+ 1)-matrices with trace O = nonsingular orbit
e | | e

noncritical values

characteristic polynomials » ,
POy = complement to the swallowtail

1993-13. Does there exist any planar not necessarily symplectic connection in the
Milnor stratification at least for A»? In other words, can one choose Dehn twists
along a parallel and a meridian on a torus with hole V so that they satisfy the
relation aba = bab in the group DiffV [or better in the group Diff(V,dV) leaving
all points of the boundary stationary], but not in 7y(DiffV')?

1993-14. In CoOHEN P. -B., WOLFART J. Dessins de Grothendieck et variétés
de Shimura. C. R. Acad. Sci. Paris, Sér.1 Math., 1992, 315(10), 1025-1028,
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the Lobachevskii triangles with angles %, g,and ~ and the groups generated by

these triangles are considered. We know that among these triangles, there are 14
especially remarkable ones (physicists’ “mirror symmetry” = the “strange duali-
ty” between the Gabrielov—-Dolgachev numbers). The question is, whether or not
these 14 triangles are somehow distinguished in the arithmetic-topological theory
of Galois—Grothendieck—Shabat, too.

1993-15. In a paper by Mourtada [MOURTADA F. -Z. Familles génériques a qua-
tre parametres de champs de vecteurs quadratiques dans le plan. Singularité a
partie linéaire nulle. C. R. Acad. Sci. Paris, Sér.1 Math., 1993, 316(7), 673-678]
(presented by R. Thom to the PDE section for some reason), bifurcations of phase
portraits are given, and the abstract of the paper claims that all portraits in domains
contained in the complement of the bifurcation diagram are considered, while in
the text (at the end), it is mentioned that the limit cycles are not studied. It is
necessary to finish the study of limit cycles in the context of this paper (at least,
determine their number!) and describe their bifurcations.

1993-16. Pierre-Louis Lions has recently been awarded a prize for a study of the
influence of small viscosity on the Hamilton—Jacobi-Bellman equation; the prize
announcement says that he invented viscous solutions and proved their conver-
gence to shock waves in an appropriate sense.

As far as I remember, some work in this direction has been done before
Lions (in particular, by S. N. Kruzhkov). How is this work related to Lions’ results?
What new contribution has Lions made?

1993-17. Is there the following fact in popular literature: The binomial coeffi-
cient C! coincides modulo p? (p is an odd prime) with the value of a degree x
polynomial in i having integer coefficients if x < p?

1993-18. In C. R. Acad. Sci. Paris, Sér.1 Math., 1993, 316(5), 513-518, a
weird paper [FLIESS M., LEVINE J., MARTIN PH., ROUCHON P. Défaut
d’un systeme non linéaire et commande haute fréquence] about employing rapidly
oscillating actions in control is published. The authors criticize the notions of
complete controllability etc. and suggest something instead. This paper needs be
thoroughly investigated, because the authors appeal to differential algebra, which
by no means can be relevant. Have the authors obtained new results concerning the
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considered problems about inverted ordinary and double pendulums with rapidly
oscillating suspension points?

1993-19. In C. R. Acad. Sci. Paris, Sér. 1 Math., 1993, 316(6), 573-577 there is
the paper POLLACK R., Roy M. -F. On the number of cells defined by a set of
polynomials, where for n variables and s equations of degree d in R”, the number
of components of sets determined by s equations or inequalities for any sign choice
is estimated: < O((sd/n)"). The only reference is WARREN H. E. Lower bounds
for approximation by nonlinear manifolds. Trans. Amer. Math. Soc., 1968, 133,
167-178.

Does this result follow from Petrovskii—Oleinik theory? What is known
in the case of full intersection: how many components are there if no inequalities
are present? Or—for the complement of the union of s hypersurfaces—what 1s
a hypersurface of degree sd? What is the reason for (sd/n)" here? In standard
inequalities for a hypersurface of degree sd = D, one may rather expect D" /n. For
example, if d = 1 and n = 2 then the number of domains ~ s°/2 but not s*/4;
by integration, it seems, in R” for d = 1 we get: roughly speaking, s"/n!, more
precisely, ¢"(s/n)" 4 --- > §* /0" which contradicts the result of the paper. Maybe
the authors mean O for »n fixed? Why do they then take all of #»"?

1993-20. Is it possible to evaluate the Casson invariant of knots of singularities
(at least, for the Brieskorn singularities x? + y? + z¢, whose associated knots are
not homology spheres) [the definition can be found in the paper LESCoP C. Sur
I’invariant de Casson—Walker: formule de chirurgie globale et généralisation aux
variétés de dimension 3 fermées orientées. C. R. Acad. Sci. Paris, Sér.1 Math.,
1992, 315(4), 437-440] by analogy with the evaluations performed by R. Fintushel
and R. Stern for homology spheres? Can we obtain the signature of the Milnor
fiber?

1993-21. In DAX J. -P. Points singuliers normaux, points singuliers normaux
simples et modeles d’élimination. C. R Acad. Sci. Paris, Sér.1 Math., 1992,
315(3), 315-319, a classification of maps X — Y taking A C X inside B C Y is
given. What is this, mapping diagrams or quite a new problem?

1993-22. In PECKER D. Courbes gauches ayant beaucoup de points multiples
réels. C. R. Acad. Sci. Paris, Sér.1 Math., 1992, 315(5), 561-5635, unicursal space



90 The Problems 1993-22

curves with maximum number of double points are constructed; they all turn out
to be real. Thus, 1n the problem about space curves, as opposed to plane curves,
everything can be realized in a real domain (including any sets of double points and
cusps?). Is there a general phenomenon, namely, that the singularities of mappings
to multidimensional spaces can be “driven” into real domains (i.e., realized at
R-points for R-mappings)?

1993-23. 1. Ekeland et al. have recently proved that each centrally symmetric
(quadratically) convex closed surface in R” has an elliptic (probably, nonhyper-
bolic and non-Jordan?) closed geodesic [DELL’ ANTONIO G., D’ONOFRIO B.,
EKELAND I. Les systémes hamiltoniens convexes et pairs ne sont pas ergodiques
en général. C. R. Acad. Sci. Paris, Sér.1 Math., 1992, 315(13), 1413-14135].

Is there an example of a nonsymmetric surface without elliptic (in the same
sense) closed geodesics? In particular, is it true that any closed surface close to
a sphere has an elliptic closed geodesic? If a surface is close to a triaxial ellip-
soid, then this, seemingly, follows from the Poincaré-Birkhoff theorem (but I have
not verified whether this does indeed—points with negative eigenvalues also have
positive indices).

What can we do when the surface is close to a sphere? Probably, we could
perform averaging over great disks and again apply the Poincaré theorem—has
anybody done this? It is convenient to define the metric by a function of the form
f - the standard metric.

The question is, how does the center of the instantaneous great disk ap-
proximating the trajectory move in this averaged motion? Probably, there arises
a Hamiltonian system on the sphere specified in terms of f, and the Hamiltonian
function is related to the integrals of f over the great disks; what functions are
obtained under such an integration?

1993-24. Study the “caustic-Maxwell stratum” duality.

1993-25. Jiirgen Moser has recently found a new version of KAM-type theo-
rems: Consider the complex torus C"/(I" & Z*") with, say, n = 2 and the foliation
W1 dz) + W2 dzz = 0, generally nonresonant. The complex structure is perturbed
into an almost complex one.

Question: What becomes of holomorphic foliations? The answer is as fol-
lows: For the directions of complete Lebesgue measure, they survive (in higher
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dimensions of leaves, which are left unstudied, the foliation is also quasiholo-
morphic, i.e., the tangent plane is invariant with respect to the almost complex
structure J : T,M «—, J> = —E; but the one-dimensional leaves are complex rather
than only almost complex).

Question: What becomes of my theory of bifurcations of elliptic curves on
complex surfaces when the surfaces are almost complex? This topic is quite exten-
sive, because everything needs to be explored from the very beginning, including
normal forms of normal bundles, neighborhoods with positive, zero, and negative
self-intersection numbers, resonances, their realization, the Grauert theorem on
negative neighborhoods, and so on.

1993-26. Study the singularities of the manifold of normal matrices.

There is yet another excellent unexplored manifold, the Taylor series of
one-to-one mappings of the disk |z| < I to the plane (“the coefficient problem
for univalent functions™): stratify the boundary and investigate the singularities of
small codimensions in the space of series.

1993-27. Second, third, and succeeding braid groups: noncommutative resol-
vents. This is a very old problem, and it is time to clear it up.

Consider a general projection of a hypersurface Xy in C" onto the hyper-
plane C*~! (germ at zero). The discriminant is a hypersurface £; in C*~! over
which the number of preimages is less than the degree of £y in 0. We obtain the
chain of the discriminants X; C C*~* of the projections p; : C*~*+! — C"~/ and the
chain of the groups I'; = *Jtl((C"'"':Jrl \ Zi_1,b:) (near 0), where b; € Cr1 we
have I'; = F;/R;, where F; is the group generated by loops around X;_ in the fiber
p;'1 (pib;) and R; is the normal closure in F; of the subgroup generated by the prod-
ucts (Agf)f~!; here f € F; and Ay is the action on F; of the groups F;;1 by the
braids ((p S F}.H).

Clearly, the generators of I'; 11 (denoted by ¢ above) correspond to relations
in I[';. Moreover, the generators o of the group 1., correspond to relations from
R;11 in I';y 1 and, therefore, to “relations between relations” in I,

Thus, the relations (elements of R; 1) in I';11 correspond to the generators
(elements of F;») of the group [;y,. If o0 € F;15 is such a generator, then A, acts
as a braid on F;, and takes @ to AyQ; the element & = (A4@)0~! € F;41 acts now
on F;. We obviously have the following “Poincaré’s d*> = 0 lemma”:

Acf=f VE=(Aa9)9™' VfEF.
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Fig. 1: The sequence of discriminants X; and groups I

Question: To what degree is R,y less than the subgroup I%H of the braid
group acting on F;y; that is defined by

Rij1 = {0' € Br(Fq) | V€= (c@)p ' € Fyy VfEF Acf = f}?
This is a general question referring to any germ of a hypersurface at a point.

Now, let Xy be a swallowtail in C*=" (it can be obtained from X_; = {x,A |
XML A xt=1 ...+ A, = 0} by projecting along the x axis in C**!). Then Iy =
Z, Ty =Br(u+1),and I, = F, /R, = R,.

Urgent question: Is it true that ['; = I3 /R3 = f’é}? or §3 D R3?7 How can
we describe ['3?7 Should we take quasihomogeneous, rather than general, projec-
tions p;?

1993-28. Yet another old topic which it is timely to recall is singularities in
“Cartan’s geometric theory of PDE.” The subject matter is systems of differential
equations, that is, submanifolds in finite-order jet spaces, or, which is the same,
modules of consequences.
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1993-29. Suppose that v is a vector field in R” which has a singular point and the
real parts of the eigenvalues of its Jacobi matrix are negative (everywhere, rather
than only at the given singular point). Is it true that the basin of attraction of this
singular point is the entire space R"?

Perhaps, the condition will look less embarrassing if we consider the con-
trol system x = v(x) + u; for an arbitrary u, the fixed point of this system is an
attractor (with negative Lyapunov exponent).

1993-30. Compare the studies of the normal forms of Stokes surfaces performed
by A. I Neishtadt and S. K. Lando.

1993-31. M. R. Herman has presented a nice construction of an area-preserving
diffeomorphism of a disk with positive Lyapunov exponents in the whole domain
(see below). Is it possible to adapt this construction for solution of Sakharov’s
problem on fast ideal dynamo?

Recall that the collection of objects {A: B? — B’ satisfying detA, = 1
and a divergence-free field v on the ball B>} is called a fast ideal dynamo if
[[[z|A™|? dx > CexpAn, A > 0.

The construction communicated by Herman: Let A: T> — T2 be an
Anosov map, say, (} 1), and 6: T* — T* be a holomorphic involution with 4 fixed
points [e. g., the covering w? = P4(z) of an elliptic curve over $?]. In R*/Z?,
4 points (0,0), (0,1/2), (1/2,0), (1/2,1/2) remain fixed under the action of A°
(since (0,0) is fixed under A, and the other points permute). Therefore, A® acts on
the sphere (with 4 fixed points) as an Anosov system. Now it remains to resolve
these 4 points.

1993-32. Multidimensional continued fractions and A-algebras.

D. Eisenbud has recently constructed an example (see below) of an A-alge-
bra over C with moduli (not “simple”). Recall that an A-algebra is graded and has
a Poincaré series 1+f+ 1>+ - of polynomials in one variable. The degrees of
multiplicative generators are determined uniquely: 1 = uy < uy < up < --- (u; fills
the first lacuna in the degrees of monomials in lower-degree generators).

Thus, we can compose a Young diagram; for example, the anomaly o; =
u;—igives | =0p <o <o <---. Is there a relation between the presence of
moduli in A-algebras with given anomaly and in flattenings?

Eisenbud hopes to prove transversality at the Weierstrass points.
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Certainly, most likely, there is no relation, but nevertheless, the simplicity
(the absence of moduli) selects simple ones among all Young diagrams, and of in-
terest is the list of Young diagrams simple in this sense. The bifurcation diagrams
also might deserve attention (though I do not know what they are, for the space
of A-algebras is not linear). Maybe, we should consider one-dimensional exten-
sions of the ready Ay -algebra (of dimension |\ over C), because if an algebra has
moduli, then they manifest themselves for the first time somewhere in the chain of
extensions, and the space of extensions is less singular (it is not improbable that it
is even not singular at all for one-dimensional extensions).

Eisenbud’s example: The generators are x1, xp, x3, X4, X5, Y6, V7, ¥8, and
x17 (the subscripts indicate their degrees); the relations are x;x; = 0, x;y;jyx = O,
and x1y; = x2y; = 0; the relations between y; are the same as between yf (e.g.,
Y6y = y%; the multiplication by y; acts on x3, x4, and xs as

X3y7 = X4Y6, xX4yg = Xsy7 = x5y8 = 0, x17yi = 0,
X3yg = X5Y6, X4y7 = ax3yg = AX5Ye.

We claim that @ is a modulus. Indeed, multiplying the generator of degree i by A;
for various i, we obtain that

X3y7 = X4Y6 implies 7\,37\,7 = 7\,47\,6

= ) !
Yeys =y> implies Aghg = A3 } = (A4A7 = A3Ag) = a 1s a modulus!

1993-33. Explore the asymptotic properties of random integer planes: Is their
statistics similar to the Gauss statistics for continued fractions?

1993-34. Model the spectral sequence of a bundle by singularities in the same

fashion as the homology complex is modeled by the Morse complex; namely, put

geometric objects in correspondence with differentials and obtain “Morse inequal-

ities,” 1. e., express the existence of some singularities (and bound characteristics of

these singularities from below) in terms of differentials from the spectral sequence.
A concrete question: For the bundle

SZn—l— 1
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and a generic function f on S?"*!, specify the necessary multiplicity p of a crit-
ical point of the restriction of f to a fiber p~!(b) for the worst fiber; the word
“necessary”’ means “minimum over all generic f.”

1993-35 (S. P. Novikov). Consider a cyclic covering of a compact manifold and
a general pseudoperiodic smooth Morse function f on the covering space (the
differential of f is lifted from the iitial compact manifold). Let +1 denote the
action of the group Z on the covering space, and let f(x+ 1) = f(x) + 1. Suppose
that f has critical points p and g of indices i and i — 1, respectively. Consider the
“instantons” (trajectories of the field grad f) joining the points p and g —n. Is the
number of such instantons bounded by the exponent of n?

1993-36. Take a neighborhood U of a hyperbolic fixed point O of a diffeomor-
phism of the plane A. The order of a homoclinic point p (i.e., such that A" p — 0
as m — o) is the number of the points on the orbit of p that fall outside U':

ord(p) =#{meZ|A"p ¢ U}.

Is the number of homoclinic points of given order » bounded by the exponent of n?

1993-37. A connected smooth hypersurface in the real projective space is said to
be locally hyperbolic if its second quadratic form is everywhere nondegenerate.
Is it true that all closed connected locally hyperbolic nonconvex surfaces in RP>
are quasiconvex and separate pairs of projective subspaces, having just two inter-
section points with every straight line connecting these subspaces (see problem

1990-47

1993-38. Is the set of closed connected locally hyperbolic nonconvex surfaces
in RP? connected? Is it true that any such surface has a convex plane section?

1993-39. Is it true that the generic caustic formed by the r-th conjugate points
along the geodesics from a given point on the sphere S? has at least four cusps for
any Riemannian metric on $%?

1993-40. Is it true that the generic caustic formed by the r-th conjugate points
along the geodesics from a given point on the sphere S° has at least four Dy-type
singularities for any Riemannian metric on S*?
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1993-41. This problem and the six subsequent ones are devoted to critical points
and Lagrangian singularities.

Let us consider a generic convex smooth closed curve y on R? and its nor-
mal lines. The unit vectors on these lines determining the same orientation as
internal normals to Yy form a Lagrangian submanifold M of the space T*R? (we
identify tangent and cotangent vectors using the Euclidean metric of the plane).
Whitney cusped singularities of the projection of this Lagrangian submanifold on-
to the plane—they are the curvature centers of y for its vertices—are singular points
of the caustic I' consisting of the curvature centers of y for all its points.

The manifold M is diffeomorphic to a cylinder. Unit vectors applied out-
side a large disk containing the caustic form two “collars” (semicylinders) on M.
These collars are projected into the plane diffeomorphically, and the middle part
of the cylinder—with singularities (the set of critical values is the caustic I).

Can the middle part of the cylinder M be replaced with another Lagrangian
embedding, so that the resulting projection of the embedded Lagrangian cylinder
into the plane has no Whitney cusped singularities (and coincides with the original
projection on the collars)?

1993-42. A relaxed vesrion of the previous problem: can the middle part of the
cylinder M be replaced with a Lagrangian immersion, so that the resulting projec-
tion of the immersed Lagrangian cylinder into the plane has no Whitney cusped
singularities (and coincides with the original projection on the collar)?

1993-43. The cylinder M mentioned in problem 1993-41 is optical, i. e., it lies in
the hypersurface p> = 1.

Can we replace this cylinder (the boundary collars being left intact) with
an optical immersed (or embedded) Lagrangian cylinder whose projection on the
plane has no Whitney cusped singularities?

1993-44. The topological invariants of the space of Morse functions on a giv-
en compact manifold (or of the space of functions whose critical points are not
more complex than singularities from a given class) are interesting invariants of
smooth manifolds; cf. ARNOLD V. 1. Spaces of functions with moderate singular-
ities. Funct. Anal. Appl., 1989, 23(3), 169-177; the Russian original is reprinted
in: Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 455—-469.
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Are the homotopy types of these function spaces determined by the topo-
logical type of the initial manifold, or do they indeed depend on the smooth
structure?

1993-45. Consider a Morse function on a connected compact manifold. A suit-
able diffeomorphism sends all critical points of this function into a small ball in
the manifold. The restriction of our function to a neighborhood of the boundary of
this ball determines a Lagrangian (or Legendrian) collar, that is, the set of the first
differentials of the function or its 1-jet at the points of a spherical annulus.

Is it possible to reconstruct a manifold from its Lagrangian collar? For
what pairs of manifolds M| and M7 do there exist functions f;: M{ — R and
f2: M} — R that coincide on balls containing all critical points?

1993-46. Consider a family of smooth functions as a function on the space of a
smooth bundle (with compact base and fibers). Can the numbers of degenerate
critical points (of different types) of the restrictions of this function to the fibers be
estimated from below in terms of the topology of the bundle?

1993-47. Consider a smooth function in a neighborhood of a critical point O of
finite multiplicity. Suppose that the index of the corresponding gradient vector
field at O is zero. Consider the Lagrangian collar determined by the restriction
of this function to a neighborhood of a sphere dB centered at 0. Does this collar
bound a Lagrangian disk (or other Lagrangian manifold embedded in the cotangent
bundle of the ball B) disjoint from the zero section?

1993-48 (M. B. Sevryuk). Let a smooth involution G: M — M of an N-dimen-
sional manifold M possess an invariant n-torus L C M, L = T", the restriction G|
being conjugate to the transformation ¢ — —@ (@ denotes the angular coordinate
on T") and therefore having 2" isolated fixed points. What types of involution G
can be at these points?

If a € M is a fixed point of the involution G then by definition the type of
involution G at this point is (p,N — p), whenever the linear part of G at the point a
is a reflection in an (N — p)-dimensional plane. If

(plaN—pl)a' "7(p2"aN—p2")
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are the types of involution G at fixed points ai,...,ay on the torus L, then
n < pi <N foralli. Do all the collections of numbers p; meeting these inequalities
indeed occur?

1994-1. We use the term pseudofunction for an immersion S! — $? bounding
half the sphere area and homotopic to an embedding of the equator in the class
of immersions such that no subloop smaller than the entire curve bounds half the
sphere.

Prove that a pseudofunction intersects any equator. Proved by A. B. Given-
tal’ even for Lagrangian RP" in the symplectic CP".

1994-2. Prove that the number of inflections of a pseudofunction is at least four.

1994-3. Consider the cylinder S' x I. An immersion of S! into this cylinder is
called a O-pseudofunction if it bounds half the cylinder area and is homotopic to an
embedding of the boundary of an embedded disk in the class of immersed curves
bounding half the cylinder area and containing no subloops bounding such an area.

Prove that a O-pseudofunction intersects the equator. Study the existence of
four inflection points for a O-pseudofunction. A curve on the cylinder x> +y* = 1,
z] < 1 can be projected onto the sphere x* +y* + 7> = 1 either from the center or
by the horizontal radii from the points on the vertical axis of the cylinder (i. e., by
means of the Archimedean symplectomorphism). The former projection transforms
the inflection points on the cylinder into inflection points on the sphere. The latter
transforms the inflection points into points of double tangency with projections of
great circles. The perturbations of the cylinder equator that, together with the
equator, bound zero area have four inflection points in both senses.

1994-4. If a curve embedded in S? meets the great circle 2k times, then it has
at least 2k inflection points. Find the symplectic (or contact) setting of this geo-
metric theorem and transfer it to general Chebyshev systems.
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1994-5. A curve (immersed circle S') in R?* is called convex if no hyperplane
Intersects it in more than 2n points (counting multiplicity). Is it true that any
convex curve in R?* has a convex projection on R¥*~29 or is a projection of a
convex curve in R¥29 A similar question for projective convex curves in RP"
with not necessarily even m is also interesting.

1994-6. Smooth curves in R> close to plane convex curves have at least four
flattening points. To give a contact formulation of this assertion (in the spirit of
the Morse—Chekanov Legendrian theory), it would be useful to understand how
large can a deformation be while still preserving the lower bound of four flattening
points. Is it sufficient to assume that the initial curve as well as the dual curve
remain trivial (embedded and unknotted) in a deformation?

1994-7. Consider the Legendrian self-linking numbers L; of a Legendrian curve
in the solid torus ST*R>. Are they contact-invariant (i. e., are they preserved by
the contactomorphisms of the solid torus onto itself that preserve the orientation
of the basis circle and the co-orientations of the contact planes)?

Solved affirmatively by E. Giroux. A positive answer would follow from
the connectedness of the contactomorphism group described above, but this con-
nectedness is not proved. It is only proved that the contactomorphisms of the
above-mentioned type cannot change the type of trivialization of a torus bundle
“at infinity” (x> 4+ y*> > 1) and over the basis circle.

1994-8. What is the analog of the Bennequin inequality for Legendrian curves in
ST*M*?

1994-9. Does the universal Milnor fibration of surfaces for A, in C? (23 +A;x+
A2 + ¥ +z2 = 0) have a symplectic flat connection?

For curves in C?, such a connection is constructed as follows: an elliptic
curve with a marked point is identified with a neighboring elliptic curve with a
marked point by a real linear realification transformation of the covering plane
which maps the basis of the initial period lattice to the basis of a close lattice.

1994-10. How does the number of isotopy classes of plane (or spherical) curves
with n double points grow? What is the distribution of these curves in the index
(whether the limit distribution is the Gaussian one)?
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Here is the empirical distribution for the plane curves having n = 5. 26,
133, 290, 364, 290, 133, 26.

1994-11. Examine the singularities of the curvature form of the natural (adiabat-
ic) connection of the bundle of the Hermitian matrix eigenvalue manifold near the
discriminant of multiple eigenvalues.

1994-12. Compare the versal deformation’s curves of the mappings (R,0) —
(R?,0) with the classification of long curve immersions on the plane: What class-
es are realized; what are the bifurcation diagrams (remember stabilization!); how
many connected components does the complement of a bifurcation diagram have;
does the smooth type of a long curve determine the connected component of the
complement; what are the expressions of the values that the invariants (J*, J—, St,
and others) take on in terms of the local algebra of the singularity; what becomes of
all this theory under complexifications, that is, for the mappings (C,0) — (C?,0)?

1994-13. Consider a particle in a magnetic field on a surface M?. Study Legen-
drian divergence-free vector fields on ST*M? and, in particular, their closed orbits.
More generally, consider divergence-free Legendrian vector fields on S* for some
(standard?) contact structure. Does there exist a counterexample to the Seifert con-
jecture (that a divergence-free field without singular points has at least two closed
trajectories) in this class of vector fields?

1994-14. Consider a particle in a magnetic field on a Riemannian manifold of
an arbitrary dimension. The magnetic field 1s given by a closed two-form on the
manifold, twisting the symplectic form of the phase space. In the case of a strong
magnetic field (large curvature trajectories) apply the averaging method and, at
least, formulate conjectures on topological lower bounds for the number of peri-
odic orbits. These conjectures should generalize the theorem on the existence of
2g¢ + 2 curves of large geodesic curvature on a surface of genus g.

1994-15. Is it true that a projective curve which does not intersect any more with
its osculating hyperplanes is convex (that is, the number of intersection points of
this curve with any hyperplane, counted with their multiplicities, does not exceed
the dimension of the ambient space)? Investigate the number of connected com-
ponents and the boundary of the manifold of convex curves in RP” (stratification,
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bifurcation diagrams, stabilization, ...). There is a single connected component if
the orientation is not taken into account (S. S. Anisov).

1994-16. Prove that a curve in RP” that is projectively dual to a convex one is
convex itself. Proved by B. A. Khesin and V. Yu. Ovsienko, a simpler proof was
given by M. E. Kazarian.

1994-17. Find all projective curves projectively equivalent to their duals. The
answer seems to be unknown even in RP?.

1994-18. Examine the boundary of the manifold of Mébius curves in RP? (the
Mobius curves are those from the connected component of the space of curves
having at least three inflection points, that contains all the curves close to RP!).

1994-19. Examine the boundary of the manifold of tennis immersions S! — §% (a
tennis immersion 1s an immersion from the connected component of the space of
immersions that halve the area and have at least four inflection points, that contains
all curves halving the area and close to equator in the space of curves in 5%).

1994-20. Explore the singularities of the caustic of an ellipsoid in R* (or in R”,
n > 4). Conjecturally these singularities are topologically inevitable: caustics of
other (convex?) surfaces have not less singularities, and this is true even for the
Lagrangian collapse on R" (V. M. Zakalyukin’s conjecture).

1994-21. Is it true that any knot in ST*R? = S! x R? can be realized as a Legen-
drian knot of an immersion S' — R*? Yes; solved by A. Shumakovich.

1994-22. Prove that a convex curve in RP?" is affine (does not intersect a hyper-
plane). Proved by S. S. Anisov (and others).

1994-23. Consider the front of a convex curve in RP" (its points are the hyper-
planes tangent to the curve). Are the fronts of different convex curves homeomor-
phic? diffeomorphic? Describe the topology (combinatorics) of a front: find the
number of connected components in the complement, and so on. This is interesting
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even for the simplest curve x; = coskx, y, = sinkx (k=1,...,n) in R?" (and even
if the answer for other curves is different). This problem has given rise to studies
of complex and real trigonometric polynomials, the Lyashko—Looijenga—Laurent
mapping, and graph combinatorics, but it is still unsolved itself.

1994-24. Are the Poincaré series of numbers of moduli in jet spaces rational func-
tions in the majority of local problems in analysis? For instance, is it true for al-
most all f (that is, for all f not belonging to some subset of infinite codimension
in the space of Taylor series) in the following classification problems:

— classification of the Riemannian (or Einsteinian) metrics f in a neigh-
borhood of a point in a space modulo local diffeomorphisms of this space that
leave this point fixed,

— classification of the vector fields f on a manifold in a neighborhood of a
singular point of a field modulo local diffeomorphisms of this manifold that leave
this point fixed,

— classification of the smooth mappings f: M™ — N" in a neighborhood
of a point x € M modulo local diffeomorphisms of M and N that leave x and f(x)
fixed,

— classification of the Hamiltonian vector fields f in a neighborhood of
a singular point of a field modulo local symplectomorphisms that leave this point
fixed,

— local classification of the second order differential equations y' =
fxyY);

— classification of the germs [ of hyper-Kdihler structures on a dn-mani-
fold modulo local diffeomorphisms?

Recall that the Poincaré series of numbers of moduli for a given (local)
object is the series M(t) = ¥ o m(k)t*, where m(k) is the number of moduli of the
k-jet of this object (i. e., the dimension of the moduli space).

1994-25. Is it possible to construct a theory of sufficient jets for expansions with
logarithmic terms?

1994-26. Does there exist a minimal attractor for a system of Navier—Stokes
equations whose dimension unboundedly increases as the viscosity diminishes
(dim — c0oas v — 0)?



1994-27 The Problems 103

1994-27. Is it true that the minimum dimension of an attractor of a Navier—Stokes
system unboundedly increases as the viscosity diminishes?

1994-28 (Ya.B. Zeldovich). Does there exist a divergence-free field v on a three-
dimensional torus T> such that a magnetic field B satisfying the system

%I-:- +{v,B} =uAB, divB=0,

grows exponentially as ¢ increases for some initial field By? Is there a divergence-
free vector field v on T? which is a fast kinematic dynamo?

1994-29 (Ya.B. Zeldovich— A. D. Sakharov). Does there exist a volume-preserv-
ing diffeomorphism of the three-dimensional ball B>, whose iterations make the
energy of some initial divergence-free vector field grow exponentially with the
number of iterations?

1994-30. Consider a smooth function #g defined on the disk x>+ y* < 1. Find the
infimum of the Dirichlet integral

- () ()

over the set of all smooth functions # obtained from uy by an area-preserving
diffeomorphism of the disk.

1994-31. Consider a dust-like gravitating medium in the standard Euclidean
3-space. Describe the singularities of the caustic hypersurfaces and the particle
density in the physical space after the formation of the first caustics. Is it true
that the singularities of the solution to the Vlasov—Poisson equations for generic
initial distributions concentrated along generic smooth Lagrangian sections of the
cotangent bundle have the same topological structure as for the Vlasov equation
(where the gravitational interaction is not taken into account)? Do the density
singularities in neighborhoods of points on caustics and of caustic singularities
have the same orders as those for non-interacting particles?

1994-32. Calculate the asymptotic behavior of the maximum oscillation indices
B(p) and P,(p) encountered in general p-parameter families of oscillatory inte-
grals of functions in n variables.
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1994-33. Consider a generic analytic nearly integrable Hamiltonian system: H =
Hy(p) +€H(p,q,€), where the perturbation H; is 2w-periodic in the angle vari-
ables (g1, ...,qn) and where the unperturbed Hamilton function Hy depends on the
action variables (py, ..., pn) generically. Let n be greater than two.

Prove or disprove the following conjecture. For any two points p’, p” on
the same connected component of a level hypersurface of function Hy in the action
space, there exist orbits connecting an arbitrarily small neighborhood of the torus
p = p' with an arbitrarily small neighborhood of the torus p = p”, provided that
e = 0 is sufficiently small and H; is generic.

1994-34. Prove or disprove the following conjecture: An equilibrium point 0 of
a general analytic Hamiltonian system 1s Lyapunov unstable if the quadratic part
of the Hamiltonian function at O is neither positive nor negative definite.

1994-35. Find lower bounds for the number of periodic orbits of a charge in a
magnetic field, where the motion of the charge is confined to a surface and the
magnetic field is orthogonal to the surface. Conjecturally, on a surface of genus g,
a charge should generically have at least 2g + 2 periodic orbits. From a math-
ematical perspective, this is a problem about closed curves with given positive
geodesic curvature on the surface. When the magnetic field is sufficiently strong,
the conjecture is proved, cf. problem 1994-14.

1994-36. Consider g vectors (Ki,...,k;) applied to the origin in the Euclidean
plane such that their endpoints are the vertices of a regular g-gon. Consider the sum
of g equal intensity harmonic waves with these wave vectors. If g # 1, 2, 3, 4, 6
(say, if ¢ = 5), then this sum is not a periodic function (though it is quasiperiodic).
Example: g =5,H(xr) = Z?:l cos(k;,r).

Is it true that all closed components of the level lines A = A that bound
regions containing the origin lie in a bounded neighborhood of the origin?
Does a Hamiltonian system with Hamiltonian function H have an unbounded
phase curve?

1994-37. Is the problem of the stability of an equilibrium point for a vector
field whose components are polynomials with integer coefficients algorithmical-
ly solvable?
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1994-38. This and the following four problems are concerned with the analytical
(and geometric) solvability of analytical problems.

Let us introduce sets of “feasible manifolds” and “feasible mappings” with
the following properties:

— the arithmetical spaces R" and C" are feasible for any #;
— any rational mapping is feasible;

— the image and preimage of a feasible manifold under a feasible mapping
are feasible manifolds;

— the intersection, union, and mutual complements of two feasible mani-
folds is a feasible manifold;

— the superposition of two feasible mappings is a feasible mapping;

— if f(x,y) is a feasible function, then its derivative with respect to x and
its primitive function determined by its value at some feasible point are feasible.

Now, consider an analytical problem specified by some choice of functions
(components of vector fields, or Hamiltonian functions, etc.), which may depend
on parameters. These functions are the data of the problem. A feasible set of the
problem is a minimal feasible set containing the problem data. A problem is called
analytically solvable if its solution is a feasible function of parameters.

Prove or disprove the following conjecture: There exist a number M and
two functions N and D such that the problem of the stability of an equilibrium
point O for a vector field in R” whose components are n-th degree polynomials is
not analytically solvable

a) if n and d are greater than M,
b) if d > 1 and n is greater than N(d),
¢)if n > 2 and d is greater than D(n).

1994-39. Prove or disprove the following conjecture: The problem of the inte-
grability of a differential equation specified by a vector field in a space of dimen-
sion n > 1 whose components are polynomials of degree d > 1 is not analytically
solvable.

1994-40. Prove or disprove the following conjecture: The problem of the com-
plete integrability of a canonical Hamiltonian system specified by a polynomial
Hamiltonian of degree d > 2 in a space of dimension 2n > 2 is not solvable ana-
lytically.
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1994-41. Definition: A problem is geometrically unsolvable if there are no ana-
lytically solvable problems among the problems obtained from the given one by
diffeomorphic changes in the parameter space. Conjecture: The problems men-
tioned in 1994-38—-1994-40 are geometrically unsolvable.

1994-42. Definition: A problem involving a function as a parameter is almost
solvable if the function space contains a decreasing sequence of exceptional sub-
manifolds of increasing codimensions such that the problem is solvable outside
each of these submanifolds. Conjecture: There are no almost solvable problems
among those mentioned in 1994-38—-1994-40.

1994-43. Consider a vector field in the Euclidean space R’. The manifold of or-
bits of such a field (suitably chosen) can be made diffeomorphic to an arbitrary
fake manifold R* (that is, a differentiable manifold homeomorphic but not diffeo-
morphic to the vector space R*).

Can we obtain a fake R* from a vector field with polynomial components?
trigonometric? analytic? elementary? Can we explicitly write at least one such
vector field?

1994-44. A pseudoperiodic mapping is the sum of two mappings, a linear and a
periodic one. A pseudoperiodic manifold is a point’s inverse under a pseudope-
riodic mapping. Consider a pseudoperiodic (but not periodic) curve in R” (with
respect to the fixed period lattice Z"). Suppose that the rank of the linear part of
the corresponding mapping is maximal (i. e., equals n — 1). In that case, evidently,
the curve contains an infinite branch (finitely distant from some straight line).

Is it true that a noncompact component of such a pseudoperiodic curve is
always unique? Solved in the negative by D. A. Panov.

1994-45. Let A: M — M be an analytic diffeomorphism of a compact analytic

manifold (e. g., of the torus T?). Is it true that the number of periodic points of

period n of such a diffeomorphism is majorized by an exponential function of n?
It 1s assumed here that periodic points x are nondegenerate (1. e., that 1 is

not an eigenvalue of the derivative of the mapping A" at x). Generic diffeomor-
phisms A have no degenerate periodic points.
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1994-46. Is it true that the number of periodic orbits of periods at most T of a
polynomial vector field on a compact ball in R” is majorized by an exponential
function of 77

1994-47. Conjecture: The number of periodic points of a mapping of class C*
grows almost always not faster than some exponential function of the period.

Here “almost always” means “for almost all (in the sense of the Lebesgue
measure) the parameter values in each typical family of mappings depending on
sufficiently many parameters.”

1994-48. Consider two compact submanifolds X* and Y’ in a compact mani-
fold M™. Let A: M — M be a differentiable mapping. Consider the successive
images of the manifold X under the iterations A" of the mapping A. To mea-
sure their complexity (which grows as n increases), one studies their intersections
Z(n) = (A"X)NY with a fixed manifold Y. These intersections Z(n) are, as a rule,
smooth manifolds of dimension s = k+1—m.

Explore the asymptotic behavior of topological complexity |Z(n)| of the
manifold Z(#) as a function in time ».

In particular, is it true that for manifolds and mappings of class C=, the
topological complexity of the intersection Z(n) is almost always majorized by
some exponential function of time n? As the topological complexity measure one
might consider the sum of the Betti numbers, the characteristic numbers, the Morse
and Ljusternik—Schnirelmann numbers, the numbers of the generators and of the
relations of the fundamental group, and so on.

1994-49. Consider two germs of holomorphic curves passing through the origin
of the plane C?:
(X,0) = (C?,0) < (¥,0),

and a germ of a holomorphic mapping leaving the origin invariant:
A: (C*0) — (C2,0).

We shall apply the iterations of A to X and study the intersections of A"X with Y.
The Milnor number \(n) is by definition the multiplicity of the intersection of
curves A"X and Y at the origin.
Do the Milnor numbers p(n)} admit an upper bound exponential in time n?
It is assumed here that A 1s a mapping of finite multiplicity and that, for
each n, the curves A”X and Y do not coincide.
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1994-50. Consider an algebraic filtration
Vio>xvodVz o
of the space V| = J of infinite jets of pairs of holomorphic mappings
f:(Ck0) - (C™0), g:(C"0)— (C™0)

at the origin. The varieties V; are algebraic subvarieties in J™, 1. €., each of these va-
rieties is defined by polynomial equations on a finite number of Taylor coefficients.
This finite number however depends on i. The generalized Milnor number L{f,g)
is by definition the maximum over numbers ¢ for which the pair (f,g) belongs
to V..

Now consider holomorphic embeddings

(X5,0) = (C",0) = (Y',0)
and a germ of a holomorphic mapping
A:(C"0)— (C"0).

Conjecture: The generalized Milnor numbers [(n) of the pairs (A"X,Y)
admit an upper estimate exponential in n (provided that A is a mapping of finite
multiplicity, and that all its Milnor numbers are finite).

1994-51. Infinitesimal version of the Hilbert 16th problem. Assume that a poly-
nomial vector field on the plane admits a first integral whose level curves are cycles
(filling at least some annulus in the plane). Consider small polynomial perturba-
tions (of prescribed degree) of this vector field. The location of the limit cycles
appearing in this perturbation is given 1n the first approximation by zeros of a cer-
tain integral (found by Poincaré) along nonperturbed closed curves (which are the
level curves of the first integral).

Is the number of zeros of the Poincaré integral bounded (by a constant
depending only on the degree of the perturbation)?

1994-52. A partial case of the previous problem: consider the full Abelian
integral

I(h) = j{ (Pdx-+Qdy)

along an oval of an algebraic curve H(x,y) = h. The polynomials P(x,y) and
Q(x,y) represent an infinitesimal variation of the Hamiltonian vector field, and
I(h) is the Poincaré integral. Find an upper bound for the number of real zeros of
the function 7 for all polynomials (P, Q) of a fixed degree.
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1994-53. Materialization of resonances in holomorphic dynamics. Consider
a holomorphic mapping of a neighborhood G of the circle S! (in the complex
plane C) onto another neighborhood of the same circle:

A:(G,ShY— (G,sh).

Suppose that A induces a diffeomorphism of the circle S! conjugate to rotation Rj
through the angle 2w\, the conjugating diffeomorphism B being holomorphic in
some neighborhood of the circle: A = BR;B~!. Assume that the Poincaré rotation
number A is irrational.

Suppose that the maximal disc M (diffeomorphic to S! x R), where the
mapping A is conjugate to the rotation, is contained in the neighborhood G of the
circle S! together with its boundary oM.

Is it true that any neighborhood of each point of the boundary dM contains
a point in a periodic orbit of the mapping A, this orbit lying in an arbitrarily small
neighborhood of the boundary? Is this true at least generically?

1995-1. Explore the topology of the stratification of the space of trigonometric
(real and complex) polynomials modulo topological equivalence.

1995-2. Investigate mappings of Lyashko-Looijenga type for rational functions,
especially in the cases of two poles (Laurent polynomials) and three poles (“mod-
ular polynomials™), when the set of poles has no moduli and the answer does not
depend on the location of poles.

Evaluate the multiplicities of these mappings on various strata of the dis-
criminant (generalizing Cayley’s formula for the number of trees).

1995-3. Prove that a surface dual to a small perturbation of the projective plane
in RP? has at least four connected cuspidal edges (Aicardi’s conjecture), even at
the level of infinitesimal perturbations.

B. Segre proved that this is true for a cubic surface, and attempts to find
counterexamples by the aid of higher order spherical harmonic functions were un-
successful. The number of swallowtails on the dual surface is found to be not less



110 The Problems 1995-3

than 6. If the decomposition of the perturbation into spherical harmonic functions
does not contain cubic harmonics and starts with fifth order harmonics then, ac-
cording to Aicardi’s examples, one obtains at least 8 connected cuspidal edges and
at least 14 swallowtails.

Counterexample. D. Panov, 1997 (published in: PANOV D.A. Parabolic
curves and gradient mappings. Proc. Steklov Inst. Math., 1998, 221, 261-278):
there exist smooth perturbations of the projective plane in RP? having only one
parabolic line.

1995-4. A point on a smooth plane curve is called an r-inflection point if the
order of tangency with a suitable algebraic curve of degree n at this point 1s higher
than usually. For example, the 1-inflection points are the ordinary inflection points
(where the multiplicities of the intersections of the curve with its tangents are at
least 3). The multiplicity of the intersection with the nearest curve of degree n
usually equals (n? + 3n)/2.

How many 4-inflection points does a plane curve carry if it is sufficiently
smoothly close to a) a circle, b) a cubic oval, ¢) an oval of a fourth-degree curve?
Similar questions can be asked for any n.

Any convex curve carries at least six 2-inflection points (the intersections at
these points have multiplicity 6, for this reason, such points are called sextactic).
A curve smoothly close to a circle has at least eight 3-inflection points (and there
exist such curves with precisely eight points of nondegenerate 3-inflection). But a
curve smoothly close to an oval of a cubic curve has not less than ten 3-inflection
points (the intersections with suitable cubics are of multiplicity 10 at these points).
It is interesting to determine where the boundary between the “closeness to an
oval of a cubic” and the “closeness to a circle” passes, and what happens on
this boundary. Possibly, when the higher derivatives are taken into account, the
circle becomes an insufficiently convex curve, and there exists an interesting class
of n-convex plane curves with specially good properties for each n.

1995-5. The caustic of a general Lagrange collapse over R? has at least three cusp
edges (a conjecture of V. M. Zakalyukin). Three edges are realized in an ellipsoid’s
caustic; thus, the conjecture asserts that the case of an ellipsoid is minimally com-
plicated: the encountered singularities are topologically necessary.

1995-6. Construct a parametric Morse theory that substantiates the topological
necessity of the presence of complex critical points of functions on the fiber under
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certain parameter values, in terms of the topological complexity of the bundle on
the total space of which the initial smooth function is defined. Carry over this
theory to set-valued functions (that is, Lagrangian intersections).

1995-7. Study the singularities of the manifold of real projective curves com-
pletely decomposable into real lines.

The Maxwell-Sylvester theory of spherical harmonics asserts that this
strange submanifold of the projective space of n-th degree curves is “linked” with
the complementary projective space of curves containing the imaginary circle
x> +v% + 22 = 0 as a component in a surprising way (namely, through each point
of the complement of both spaces, there passes precisely one straight line joining

them and intersecting each of them at one point). Do there occur other such
“links”?

1995-8. Find the simplest (i. e., with the minimal number of singularities) pairs of
positively co-oriented curves immersed in the plane having equal Legendrian knots
in ST*R?, for which no regular homotopy without equally directed self-tangencies
has been constructed (and try to prove that the latter does not exist).

1995-9. Find the simplest pairs of positively co-oriented curves (or fronts) im-
mersed in the plane for which equipped knots coincide but Legendrian equiva-
lence of knots in ST*R? has not been proved (and try to prove Legendrian non-
equivalence).

1995-10. Find the simplest front with zero Maslov index whose Legendrian knot
in ST*R? has not been realized by a Legendrian curve with smooth front (and try
to prove that such a realization does not exist).

1995-11. How can we evaluate the minimum number of inflection points on re-
alizations of a given class for immersions of the circle into the plane (sphere, pro-
jective plane, surface of genus g with the Lobachevskian metric)? For example,
the figure eight has not less than two inflection points on the plane, and it can have
none on the sphere.

There is a paper by B. Z. Shapiro on this topic; cf. the dissertation of E. Fer-
rand (Who proved the symplectic or contact equivalence of the family of curves of
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an Hadamard manifold to a standard one; in particular, for the Lobachevskian
plane, this gives all four-vertex-type results).

1995-12. Transfer the theory of completely integrable Hamiltonian systems from
symplectic geometry to contact geometry (where, e. g., the Lagrangian invariant
manifolds with their natural affine structures determined by Lagrangian fibrations
must be substituted by Legendrian invariant manifolds with their natural projective
structures determined by Legendrian fibrations). Carry over the Liouville theorem
to this context and find applications to the infinite-dimensional case (where the
equations of characteristics are partial differential).

1995-13. Is the “last geometric theorem” of Jacobi valid, according to which
the first caustic (the set of first conjugate points to an arbitrary “pole” along all
geodesics starting from it) of a typical ellipsoid has exactly four cusps?

1996-1. The Eisenbud-Levin formula for the index of a vector field singularity
“drives” a global topological invariant (mapping degree) into the local algebra of
the singularity. What becomes of the other global invariants, such as character-
istic classes and numbers, under a similar localization (both in the complex and,
especially, in the real case)?

1996-2. Calculate the cohomology and fundamental groups of complements of
strata of codimension 2 (and higher) in the space of immersed plane curves. In
the case of higher codimensions of strata the homotopy (and hence homology)
groups probably are trivial. It is interesting to compare the results with those
for analogous problems concerning the spaces of versal deformations of germs of
maps (R,0) — (R?,0) (stabilization over the growing complexity of singularities).

1996-3. Prove that the n-th symmetric power of RP? is RP?".
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1996-4. Prove that the caustic is diffeomorphic to the Maxwell stratum for the
singularity B4 and transfer this result to higher singularities By, (taking into account
the symplectic or contact structures). The symplectic version was constructed by
F. Napolitano in NAPOLITANO F. Duality between the generalized caustic and
Maxwell stratum for the singularities By, and Cy;. C. R. Acad. Sci. Paris, Sér. 1
Math., 1997, 325(3), 313-317.

1996-5 (P. G. Grinevich). Let f(x) be a real Fourier integral,

1) = [ F®e=dk, F(-k) = F ),

with vanishing low-frequency harmonics [F (k) = O for |k| < ®]. Then the limiting
averaged number of zeros of f on long intervals is not less than the averaged
number of zeros of the function cos wx (i. e., the limiting density of zeros is not less
than /7).

For a Fourier series the number of its sign changes on the circle is not
less than the number of zeros for the lowest Fourier harmonic that has a non-zero
coefficient in the series.

1996-6 (F. Aicardi). Compare the following one-parameter families of hypersur-
faces in the Euclidean space R® given by a positive definite quadratic form f: a) the
family of equidistants from the ellipsoid f = 1; b) the family of “quadraticoids”
defined by the support functions f +¢ on the unitary sphere.

Calculations show that in these families, when ¢ varies, the perestroikas
are topologically equivalent for corresponding (different) forms (and, moreover,
the bifurcation diagrams in the spaces of the parameters defining the forms are
diffeomorphic).

Explain this equivalence of families, by constructing the natural mapping
between them. Does it hold in R"?

A quadraticoid and an equidistant, for two chosen corresponding forms,
define the same fields of crosses on the Gauss sphere (images under the Gauss
map of the fields of principal directions).

Question: Is the entire set of perestroikas occurring in these families topo-
logically necessary for the eversion of a front realized by the Legendrian collapse
(or even by any Legendrian isotopy)?
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1996-7. Consider a typical function z = f(x,y) of two variables. The asymptotic
directions (d2 f = 0) on its graph determine a field of crosses in the hyperbolic do-
main of negative Hessian determinant (with standard singularities on the boundary,
which consists of the parabolic points where the Hessian determinant vanishes and
the crosses degenerate into straight lines). What restriction on the topology of the
field of crosses (1. e., on the section of the corresponding bundle over the hyper-
bolic set) are imposed by the hypothesis that this field arises from a function as the
field of asymptotic directions?

1996-8. Investigate the multiplicities and the transversal multiplicities of the
Lyashko-Looijenga mapping for polynomials, Laurent polynomials, modular
polynomials on various strata and pairs of strata. For polynomials the solution has
been given by D. Zvonkine; the transversal multiplicities are the same in all cases.

1996-9. M. Barmer defines a strongly convex curve in RP" as a curve such that
for every n — 1 of its points there is a hyperplane passing through them and not
intersecting the curve elsewhere. For example, a curve whose projection from
a point to a hyperplane is convex in RP"~! is strongly convex in Barner’s sense
in RP".

Investigate the manifold of strongly convex curves: the number of its con-
nected components, singularities of the boundary, properties of dual curves, the
existence of strongly convex projections and suspensions.

1996-10. Let us say that a plane of codimension 2 in the projective space RP"
is interior with respect to a convex curve if each hyperplane containing this plane
intersects the curve at 2n points. Do there exist interior planes? What are the
topological invariants of the manifold of such planes? For n = 1, the interior
planes are the points in the region bounded by the curve. The problem has been
solved (affirmatively) by §. S. Anisov and S. M. Gusein-Zade.

1996-11. Let us say that a straight line in the projective space RP?* is exteri-
or with respect to a convex curve if, through every point of this line, 2n tangent
hyperplanes pass. Do there exist exterior lines? What are the topological invari-
ants of the manifold of such lines? For n = 1, the exterior lines are those disjoint
from the curve. The problem has been solved (affirmatively) by S. S. Anisov and
S. M. Gusein-Zade.
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1996-12. Evaluate the cohomologies of the subgroups of the braid group corre-
sponding to the coverings L2 (Lyashko-Looijenga) and L3 (Lyashko-Looijenga—
Laurent) of the complement of the swallowtail.

The classifying K(®,1) spaces of these groups are known: they are the
complements of the bifurcation diagram of the spaces of ordinary and Laurent
polynomials, respectively.

1996-13. Investigate the variety of rational functions with three poles and the
mapping L4 on it (taking a function to the set of its critical values).

1996-14. Define and explore the Morse complex of a solenoidal vector field in S°
(determined by the function on the space of closed curves whose value on a curve
equals the field’s flow through a surface bounded by this curve).

The extremals of this functional are closed trajectories of the field. The
second differential has infinitely many both positive and negative squares, but one
may try to examine “index difference” for a pair of closed trajectories with the
help of bifurcation theory. If, moreover, the field is Legendrian with respect to
some contact structure, then one may try to calculate such difference of indices of
two closed trajectories using the geometry of the restriction of the contact 1-form
to a surface whose boundary is the difference of these trajectories.

1996-15. Consider a discrete subgroup of the isometry group of the Lobachev-
skian plane [for example, the modular group SL(2,Z)]. This group acts not only on
the Lobachevskian plane but also in the de Sitter world (represented by the hyper-
boloid x? + y* — z2 = 1 of one sheet in the Klein model, where the Lobachevskian
plane is modeled by a sheet of the two-sheeted hyperboloid x* + y* — 72 = —1).

To the metric of the Lobachevskian plane, there corresponds an invari-
ant Lorentzian metric on the de Sitter hyperboloid. In the projective model, the
Lobachevskian plane corresponds to the interior of the unit disk, and the de Sitter
world, to its exterior; in both cases, the geodesics are the straight lines and the
isometries are the projective transformations of the plane that leave the separating
circle invariant.

How is the dense orbit of a point in the de Sitter world under the action of
the discrete group under consideration (e. g., of the modular group) distributed? Is
it possible to define pseudo-fundamental domains, replacing the Voronoi polygonal
domains on the Lobachevskian plane, for this world? The question is provoked by
works of E. Brieskorn and his successors on monodromy groups.
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1996-16 (Generalization of the Chevalley theorem?). The Coxeter group D(n)
acts on the space (CP!)" as follows: to a permutation of coordinates in R”, there
corresponds a permutation of factors, and to the change of sign of a coordinate,
there corresponds the antipodal involution of a factor. The manifold of orbits of
this action is diffeomorphic to $?" (this is the Maxwell-Sylvester theorem of the
theory of spherical functions). We obtain a real linear action of a (2n — 1)-dimen-
sional Lie group in C*" with smooth orbit manifold R?**!. How can we describe
all such actions?

1996-17. Consider a sign-changing generic smooth function F on the plane
2-torus. Study the motion of a charged particle with small energy in such a
magnetic field (that is, the curves of geodesic curvature F /e with € — 0 at each
point).

In the region where F # 0, the particle experiences a Larmor rotation along
a circle of small radius €/F the center of which slowly drifts along a level line of
the function F. The trajectories intersecting the line F = 0 consist of loops with
alternating orientation joined by segments of a trajectory whose inflection points
lie on the curve F = Q. It is required to write the corresponding asymptotic formu-
lae in a neighborhood of the curve F' = 0 (where the assumptions of the standard
averaging method are violated) and, in particular, evaluate the drift direction.

Would these evaluations lead to counterexamples for the problem about
four closed phase trajectories homotopic to a fiber of the sphericized (co)tangent
bundle of the torus in the case where the magnetic field F changes its sign?

1996-18. Consider a generic positive smooth function F on the standard sphere
S?. Study the motion of a charged particle at velocity 1 in such a magnetic field
(i.e., examine the curves of geodesic curvature F at every point). Do there ex-
ist (two?) closed trajectories whose phase curves are homotopic to a fiber of the
sphericized (co)tangent bundle of the sphere?

Such trajectories exist if the function F is sufficiently large. Is it true that
they always exist for a zero-divergence Legendrian vector field of the natural con-
tact structure in ST*S? without singular points? Our phase velocity field does have
these properties, and, in addition, it is transversal to the field of planes in ST*S?
determined by the Riemannian connection. The situation seems to be similar to
that in the conjecture of A. Weinstein, which was proved by C. Viterbo, and can be
modeled with the use of fields on S® instead of ST*S2.
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1996-19. Study the asymptotic curves on cubic surfaces in RP? (for example,
on those close to the plane RP?). Is this dynamical system integrable or chaotic?
What is the design of the first return function on a parabolic curve? (To each point
on the parabolic curve, this function assigns the next point where the asymptotic
line returns to the parabolic curve.)

The 27 (complex) lines on a cubic surface are asymptotic lines, so we can
learn something by applying the theory of normal forms nearby.

1996-20 (M. B. Sevryuk). Introduce the following definition. A symplectic struc-
ture is said to be r-exact if its r-th exterior power is exact whereas the (r — 1)-th
power is not (r € N). In particular, 1-exact structures are just exact ones.

Given a fixed number r, do systems Hamiltonian with respect to r-exact
symplectic structures possess any special properties?

1996-21 (M.B. Sevryuk). Does there exist a smooth vector field on R" irre-
versible with respect to any phase space involution but such that its time 1 flow
map is reversible?

If the answer to this question is affirmative then: Does there exist a
smooth vector field V on R” possessing the following properties: 1) the field V 1s
irreversible with respect to any phase space involution, 2) for each Ty > 0, there 1s
T € (0;Tp) such that the time T flow map of the field V is reversible?

1997-1. Study the combinatorics of the bifurcation diagram of the space of real
trigonometric polynomials outside the set of M-polynomials (all critical points of
which are real). For the M-polynomials of degree n, there is an explicit polyhedral
model. For example, at n = 2, the bifurcation diagram reduces to an astroid with
diagonals, and the model is a square with diagonals.

1997-2. We define a selector to be a piecewise linear function in R” with coor-
dinates (x,...,x,), which coincides, in every region where all the coordinates are
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different, with one of the coordinates. Examples are given by Matov selectors, de-
fined by expressions like max(x),xz, min(xz, max(x4,xs5,%5)),...) (each argument
enters once).

How many selectors exist in all, and how many Matov selectors? How can
we recognize whether a selector is a Matov selector?

V. I. Matov proved that, if fi,..., f, are generic smooth functions on a man-
ifold M, and S is a Matov selector, then the function S(f1, ..., fn): M — R is topo-
logically equivalent to a Morse function (and described the possible indices in
terms of the selector). Does any other selector satisfy this property?

According to calculations of F. Aicardi, the numbers of Matov selectors for
n=12,...are equal to 1, 2, 8, 52, 472, 5504, 78416, 1320064, 25637 824,
564275712, ...

1997-3 (A. A. Agrachev —M. Ya. Zhitomirskii). Let ot be a 1-form nondegenerate
on the boundary of a disk and vanishing at its tangent vectors, and let do. = oL A 3.
Then df necessarily vanishes somewhere. The authors claim that this is not so for
surfaces with boundary different from disks.

1997-4. In the theory of wave front propagation, all deformations of a Legendri-
an manifold under which it remains non-self-intersecting are usually considered
admissible. In real-life problems on the propagation of a co-oriented front, the
front can only move forward (in the direction determined by its co-orientation) and
cannot move backward. The introduction of this constraint changes the problem
setting both in the theory of wave fronts and in immersion theory. For instance,
we can consider the oriented graph where the vertices are classes of curves and
two classes A and B are joined by an arrow from A to B if A has a representative
(together with its motion forward) such that, moving forward, this representative
arrives at the class B.

Calculate the part of this graph that corresponds to immersions (fronts)
with small numbers of self-intersections (and, for fronts, cusps). Does there exist a

perestroika of 'X into X (with a different co-orientation) in the class of fronts with
two cusps?

1997-5. Is the problem of the possibility of connecting two immersions of the
circle into the plane by a path in the space of immersions without direct self-
tangencies algorithmically solvable? The conjecture is that it is not solvable, be-
cause in its framework, the problem of knot equivalence can (7) be modeled.
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1997-6 (D. A. Panov). Does a generic function exist on the plane, whose Hessian
1S positive in a region, bordered by a smooth connected curve, and the field of
asymptotic directions d” f = 0 on this parabolic curve has only one special elliptic
point? Is it true that the number of hyperbolic special points on such a curve is not
less than the number of elliptic ones?

I recall the definition of elliptic (and hyperbolic) special points on a
parabolic curve.

The special points are the points of tangency of the asymptotic direction
of the graph with the parabolic curve. QOver the hyperbolic region, the field of
asymptotic directions defines a two-sheeted covering surface in the manifold of the
non-oriented tangent elements (each point of the hyperbolic domain of the plane
is lifted to the two asymptotic directions at that point).

For generic functions, this surface is smoothly continued by the asymptotic
directions at the parabolic points. The critical line of the projection of this surface
to the plane lies above the parabolic curve.

The asymptotic directions at the hyperbolic points are lifted to a field of
directions on the surface constructed above. This field of directions on the surface
is smoothly continued to the critical line, except for those “special” points of the
parabolic curve, where the asymptotic direction is tangent to this curve.

For generic functions a special point is a singular point (a zero) of a smooth
generic vector field (in a neighborhood of the point in question on the surface
constructed above). A special point can be a saddle (index —1), and in this case
is called hyperbolic, either a node or a focus (index +1), and in this case is called
elliptic.

1997-7 (D. A. Panov). Consider a generic smooth function F on the 2-torus. Let
us construct the mapping of the torus to RP? which takes each point of the torus
to the point with homogeneous coordinates |[Fy, : Fy, : Fjy]. Is it true that every
point of the projective plane has no less than four preimages under this mapping
T? — RP*?

For a generic function, all the three derivatives cannot vanish simulta-
neously. The parabolic points are mapped to points on the zero Hessian circle
AC=B>(A=F, B= Fy, C = Fyy). Each point on this circle indeed has not
less than four preimages. This follows from the Morse inequality for functions on
a circle: For each translation-invariant vector field ad/dx+ bd /dy on the torus,
consider the derivative of F along this field. This derivative has four critical
points, which give four preimages of the point on the circle of parabolic points
that corresponds to the direction of the field.
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1997-8. Stability of pyramids. Solutions to many problems of singularity theo-
ry (such as bifurcation diagrams or caustics) have the form of a pyramid in the
3-space whose horizontal section is (more or less) akin to a hypocycloid on the
plane contracting to a point as the section plane approaches the critical “zero”
position.

Example 1. Consider a general one-parameter family of surfaces in the Euclidean
space R? that passes through the “North pole” N and contains the usual sphere
(corresponding to the zero parameter value). Let us mark out the first caustic of
the North pole N on each surface. On the sphere, this is the South pole S. On
nearby surfaces, these caustics are small curves with four (for generic families)
cusps. Together, all such caustics sweep out a surface. It has the shape of the
pyramid described above.

Example 2. Consider a generic positive function F (magnetic field) on the plane.
Let charged particles move from the point 0 in all possible directions on the plane
at a small initial velocity v. If the function F were constant, the trajectories of
the particles would be Larmor circles of small radius v/F. The corresponding
phase curves would form an exact Lagrangian torus in the phase space such that
its projection into the plane would have two envelopes, a degenerate inner point
caustic at the initial point O and an outer caustic being a circle of radius twice the
Larmor radius. The entire picture depends on the parameter v.

If F is not constant, then the interior caustic is no longer a point. It turns
into a small closed envelope of the perturbed trajectories of the particles moving
from O at an initial velocity of given magnitude v.

This envelope has (for a generic F) four cusps and is small together with
the initial velocity v. Let us place each envelope in the separate plane v = const in
the 3-space. All these envelopes sweep out a pyramid-shaped surface.

A similar pyramid was obtained by A. A. Agrachev as the caustic of a sim-
plest system with nonholonomic constraint in control theory (the example of mag-
netic field fits in this scheme).

Example 3. Consider the four-parameter family of trigonometric polynomials
Fpapc(t) =Acos2t+acost+bsint +c.

The caustic of this family consists of the parameters values (A, a,b) such
that the corresponding function has a degenerate critical point. This surface in
the 3-space has the form of a pyramid whose horizontal sections (A = const) are
hypocycloids with four cusps, being small for small A.
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Example 4. Consider a typical two-parameter family of functions for which O is
a point of zero minimum [e. g., H, p(x,y) = ¥* +* + a(x* — y*) + 2bxy + Ax® +
Bx’y+ Cxy? + Dy*].

Consider the three-parameter family of vanishing cycles
Ya,bc = {X,y . Ha,b(xay) = C}'

The number of vertices (extrema of the curvature) of a curve y with a very
small ¢ is almost always four. However, at the point a = b = ¢ = 0 of the parameter
space, a narrow tongue of the locus of curves with six vertices reaches generically
the plane ¢ = 0.

This set of curves intersects the plane ¢ = const > 0 in a small plane region
bounded by a curve with six cusps, similar to a hypocycloid. As c approaches zero,
this “hypocycloid” contracts to a point. The entire boundary of the tongue of the
locus of curves with six vertices in the parameter space has the shape of a pyramid
near the pointa=»h =c =0.

The problem is to determine the stability of the pyramid singularities men-
tioned above. In all cases, the question reduces to examining families of functions
on the circle.

The conjectured answers are: the caustic (and the corresponding family of
functions on the circle) is stable (with respect to the analytic or smooth deforma-
tions of the condition of the problem and, respectively, to the analytic or smooth
normalizing diffeomorphisms) in a “conic neighborhood” of the corresponding
pyramid in the parameter space. This “conic neighborhood” of the pyramid is it-
self bounded by a larger pyramid with the same vertex. Such a “neighborhood”
contracts to one point at the vertex of the pyramid (and, therefore, the diffeomor-
phism reducing the caustic to normal form becomes only a homeomorphism at the
vertex).

1997-9. The mathematical trinities. In addition to the pairs (an object, its com-
plexification) in various mathematical theories, one often encounters triples of ob-
jects. The conjecture is that it is not a coincidence, and all the triples are related by
commutative diagrams. The arrows joining two such triples usually form a natural
triple themselves. The problem is to verify this conjecture and to study such triples
systematically.
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Here are several examples of such triples:

R C H

Eg E7 Eg
Py Xy J10
Aj Bj H3
Dy Fy Hj

tetrahedron  octahedron icosahedron
6=2-3 12=3-4 30=5-6
60°,60°,60° 45°,45°,90° 30°,60°,90°

SO Sl 83
st = st S? = 82 N
coverings connections 7
monodromy curvature 17
Wi Ci Pi
usual trigonometric modular

polynomials polynomials  polynomials

usual trigonometric  elliptic

numbers numbers numbers

cohomology K-theory elliptic
cohomology

The symbol ? denotes a conjectural “hyperconnection”; probably the latter
is some quaternionic thing turning into the connection of a fibering over complex
curves in the base which, however, has many complex structures over whose curves
these connections have some discordance.

The symbol ?? should denote a conjectural hypercurvature 4-form (which
most probably measures the extent of violation of some generalization of the
Bianchi identity by a hyperconnection).

1998-1. Combine E. Cartan’s theory of differential systems with singularity the-
ory. One should distinguish two higher (and infinite) codimension exceptions from
the generic cases studies, while in the present form the Cartan theory, like the
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algebraic geometry, is more interested in “general statements” (like the Hilbert
finiteness theological theorem) admitting no exceptions (in the analytic category),
while to extend these to the smooth categories one should distinguish different de-
grees of degeneration, whose representatives might behave quite differently.

1998-2. Consider a generic smooth surface in the three-dimensional real projec-
tive space. Can this surface have less than six special parabolic points (where the
asymptotic direction is tangent to the parabolic curve, and the dual surface has a
swallowtail)? If the number of special points is less than six, can the number of
connected parabolic curves be less than four? The number of special points in
Panov’s example with only one parabolic line is equal to 12.

1998-3. Consider a smooth parabolic curve of constant multiplicity on a surface
in the projective 3-space. Into how many parabolic curves of multiplicity one does
it decompose under a small generic perturbation?

The question is open even for the surfaces whose equations in affine co-
ordinates have the form z = f(x,y) and whose parabolic curves are the infinitely
distant straight line. In this case, the multiplicity is even (and equals two in the sim-
plest situation), and the conjectured number of multiplicity-one parabolic curves
of the perturbed surfaces is three.

Is it true that a general surface close to the surface specified by the equa-
tion z= 1/(x®+y?) [z = x/(x* + ¥*)] in affine coordinates has not less than three
[respectively, two] parabolic curves in a neighborhood of infinity?

1998-4. The spherical second differential of a function on the sphere is the
quadratic form on the tangent space that measures the difference between the
given function and the nearest restriction to the sphere of a function linear in the
ambient space.

A function is called Ayperbolic if its spherical second differential is hy-
perbolic everywhere except at finitely many points (where the function can have
singularities).

Can an odd hyperbolic function on the 2-sphere have less than six logarith-
mic poles?

Can an odd function obtained from an odd hyperbolic function on the
2-sphere by a generic smoothing have less than eight parabolic curves (along which
the spherical second differential degenerates)?
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1998-5. Does there exist a surface z = f(x,y) whose Gaussian curvature [at ev-
ery point (x,y, f(x,y)})}] is the given function g(x,y)? Here, f and g are functions
smooth 1n a neighborhood of the given point.

Answering a similar question for the Hessian requires solving the equation
fexfyy — [, = h(x,y), where h is a function defined in a neighborhood of the given
point.

What singularities can a parabolic curve (A = 0) of a smooth surface have
in a neighborhood of its flattening point (where df = 0 and d* f = 0)?

1998-6. Let us consider a curve specified by the equations x = cost, y = sint,
z = cos3t. This curve has six flattening points (of zero torsion). Is it possible to
annihilate all these flattening points by an admissible regular homotopy of a curve?

A regular homotopy is called admissible if, in course of the deformation,
there are no events of

a) self-intersections of the curve (changes of the knot type);

b) self-intersections of the dual curve (formed by osculating planes of the
initial curve in the dual space).

¢) inflection points (zero-curvature points);

d) tangencies of the dual curve with the surface of the front (formed by
tangent planes to the 1nitial curve).

1998-7. The curves admitting a convex projection in the projective space form a
domain in the space of curves. Examine the boundary of this domain, namely, its
stratification, the singularities of the intersection of the boundary with the transver-
sals to its strata, and the complex of its strata.

Similar questions for convex curves themselves and for “strongly convex”
Bamer curves (see problem 1996-9) are also interesting.

1998-8. Study the cohomology rings of the complements of the bifurcation
diagrams of holomorphic functions: Is it true that these complements are the
Eilenberg—-MacLane K(w, 1) spaces? What are their stable Betti numbers (and
cohomology rings)?

1998-9. To an entire algebraic function, in addition to its braid group, there are
related a series of the groups of its second, third, etc. braids. These groups are de-
fined as the fundamental groups of local complements of successive discriminants,
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each being the set of atypical values of the projection of the preceding discriminant
along the fibers of a generic one-dimensional bundle. As the initial “discriminant,”
we take the graph of the function treated as a hypersurface in the product of the
domain of the function by its range fibered over the domain.

These groups, discriminants, their complements, the cohomologies of
these complements, and the corresponding monodromies remain absolutely un-
explored even for the simplest algebraic function z(a) specified by the equation
7" —l—alz:"_l +---+a,=0.

Even a description of generators and relations in these groups is of inter-
est. In addition to generic projections, it is interesting to consider the sequence of
projections successively forgetting a,,a,—1,- - .

1998-10. How to complexify braid theory? the Maslov index? the theory of
Vassiliev’s knot invariants?

1998-11. When the number m is large, what is the behavior of the greatest mul-
tiplicity (Milnor number) of a critical point of a holomorphic function in two vari-
ables depending generically on m parameters?

1998-12. Can an asymptotic line on the surface z = f(x,y) all of whose points
are hyperbolic be closed?

1998-13. Does the Euler equation for an ideal fluid have new conservation laws
in addition to the classical ones? Are there such conservation laws along coadjoint
orbits of the group of volume-preserving diffeomorphisms of the domain?

1998-14. How can we complexify the ring Z? On the set of homotopy classes of
the mappings of a Lie group into itself that leave the identity fixed, two generally
noncommutative operations act: “addition,” defined by (a +b)(g) = a(g)b(g), and
“multiplication,” defined by (ab)(g) = a(b(g)).

For instance, we obtain the ring Z from the group U(1) = SO(2) and the
field Z, from the group O(1). What is obtained from SO(3)? from Spin(4)? from
other groups?

1998-15. What is the quaternionic analogue of the determinant?
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1998-16. How can we complexify the notions of one-dimensional holomorphic
bundle and of its connection and curvature? What becomes of the theories of
quantum Hall effect and of Berry phase under such a complexification?

1998-17. Contactize the symplectic Liouville theorem on completely integrable
Hamiltonian systems.

1998-18. A vector field v of divergence zero on a 3-manifold is called Hofer if
it is the field of kernels of a 2-form having contact potential [this means that the
field v is specified by the condition i, (da) = 0, where ot A do. nowhere vanishes].

Consider the motion of a charged point on a surface under the action of a
magnetic field orthogonal to the surface. Under what conditions is the correspond-
ing vector field on the 3-manifold of unit tangent vectors to the surface Hofer?
Even the case of a nonvanishing field on the sphere with standard metric is inter-
esting.

1998-19. The Heisenberg indeterminacy relation leads to the following conjec-
ture. Let I" be a closed subgroup of the commutative group of the Euclidean
space R" such that the quotient space by I" is compact (e. g., a lattice).

Suppose that a ball of radius r is contained in the complement of I'. Then in
the dual Euclidean space there is a nonzero “wave vector” k of length not exceed-
ing c/r such that the scalar product (k,x) takes only integer values when x is in I".

Here c is a constant depending only on .

1998-20. Classify the simple curve singularities in a contact space.

1998-21. The following problem about Legendrian links was communicated to
me by R. Penrose.

Consider the space-time R*t! (with pseudo-Riemannian metric of signa-
ture 4+ 4+ — positive definite on the isochrones ¢t = const).

The manifold of light rays in such a space has a natural contact structure.
The rays from one point of the space-time form a Legendrian submanifold in this
manifold.

The problem is to study the relation between the causality (the possibility
of joining two points in the space-time by a time-like curve) and the linking of the
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corresponding Legendrian manifolds of dimension n — 1 in the (2n + 1)-dimen-
sional space of rays in the (n+ 1)-dimensional space-time.

1998-22. Consider an n-edge polygonal knot in R? or in S*. How does the min-
imum number of simplices in a triangulation of this space whose 1-skeleton con-
tains the most complex n-edge knot grow with increasing n?

1998-23 (N. A. Nekrasov). Consider the quotient space of the space of (germs of)
pairs of functions with zero Poisson bracket modulo the group of (germs of) sym-
plectomorphisms. We claim that this “manifold” has a natural symplectic structure
and i1s endowed with a natural discriminant of complex codimension one.

The problem is to study the fundamental group of the complement of this
discriminant. Is this complement an Eilenberg—MacLane space? What is its coho-
mology ring?

1998-24 (A.N. Varchenko). The equation uu? + uyu2 — 2usi;uy = 0 has the
property that, if u is its solution, then so is f(«). What other operators have sim-
ilar invariance properties (and how can they be used to construct hydrodynamical
analogues, topological invariants, topological variational principles, etc.)?

1998-25. The problem on Jordan matrices by M. L. Kontsevich. Consider the
space of square complex matrices of a fixed size. Can one choose one represen-
tative of each class of conjugate matrices so that all these representatives form a
collection of affine subspaces of the matrix space?

1999-1. Compile a complete list of the adjacencies of simple curve singularities
in CV.

This and the following six problems are concerned with complex curves,
that is, germs (C,0) — (C¥,0); however, the same questions for real curves, that
is, germs (R,0) — (R¥,0), also make sense.
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1999-2. Compile a list of the semigroups of simple curve singularities in CV.

a) Does a semigroup determine the type of a (simple) singularity?

b) What pairs of semigroups exclude the adjacency of the corresponding
singularities (probably, simplicity is not essential here)?

c) Are the remaining adjacencies realized for some pair of singularities
(simple? not simple?) with given semigroups?

1999-3. Is it true that the simple curve singularities in CV are precisely those
stably simple singularities that can be realized in CV?

1999-4. Compile a list of the filtered Artin algebras of simple singularities for the
curves f: (C,0) — (CV,0).

a) Does such a filtered algebra (or its action on m!/ A by operators) deter-
mine the type of a simple singularity (or its semigroup)? Here, m! is the maximal
ideal in the space of germs of functions (C,0) — (C,0) and Ay is the ideal gener-
ated by the components of the mapping f.

b) Does the semigroup of a singularity determine its Artin algebra or the
filtration?

1999-5. Resolution of singularities of simple curves in CV.
a) Compile a list of resolution graphs. How are they related to question a)
in problem 1999-2?

b) Is it true that moduli of curves arise precisely when moduli of resolutions
do (in the case of 4 points on P, etc.)?

1999-6. Stabilization of curves. Consider the base CMW) of versal deformation
of a more complex singularity containing the stratum X of a simpler singularity.
a) How many (locally) irreducible components does the stratum X have?
b) In what sense do the topological (homological? homotopy?) properties
of the complement CMWV)\ T stabilize as N — o00?
c) In what sense do these properties of the complement (whether or not
it stabilizes as N — oo) stabilize when the type of the simpler singularity is fixed

and the type of the initial more complex singularity (simple? any?) becomes more
complicated?
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1999-7. The stratum L = const for curves. Consider the “manifold” of singulari-
ties of given codimension L of the orbit in the function space as a submanifold in
the base CH of its versal deformation.

a) Is this “manifold” smooth? irreducible?

b) How can its dimension m in C* (“number of internal moduli”) be eval-
uated (with the use of the semigroup? algebra? resolution?) or at least estimated?

c¢) Is it true that m is semicontinuous with respect to the choice of the initial
singularity, 1. e., coincides with its usual modality?

1999-8. Fix a positive integer n > 3 and consider n positive integers a,az, .. ., a.
Their sums (linear combinations with integer non-negative coefficients) constitute
the semigroup S(a) of positive integers:

S(a):= {{k,a) [ ke Z }

(Z, = {0;1;2;...}). Suppose that ged(ay,az,...,a,) = 1. Then, starting from
certain K(a) € Z,., all the non-negative integers lie in S(a). For instance, K(a) =
(a1 — 1)(az — 1) for n = 2. Note that this value of K(a) is always even (since the
numbers ay and ay are relatively prime they cannot be even simultaneously). The
problem of calculating K(a) for n large is called the Frobenius problem.

Explore the statistics of K(a) for typical large vectors a. Conjecturally,

K(a) %c”_{/alaz---an, c= "3/ (n—1).

The subsequent three problems are devoted to the statistics of the semi-
groups of positive integers S(a) for relatively prime ay,az, ... ,a, as well. All these
problems are intended mainly for a computer experiment—with the prospects of
concluding with proofs. The case n = 3 is already interesting.

1999-9. For n =2, a number N € 7Z belongs to the semigroup S(a) if and only if
the number K(a) — 1 — N does not (J. J. Sylvester). Thus, for n =2 the semigroup
S(a) occupies precisely one half of the segment [0;K(a) — 1] (recall that, for n =2,
the number K(a) — 1 is always odd).

Determine what fraction of the segment [0;K(a) — 1] is occupied by the
semigroup S(a) for n > 3 and for large vectors a. Conjecturally, this fraction is
asymptotically equal to 1 /n (with overwhelming probability for large a).
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1999-10. Examples show that S(a) fills the right half of the segment [0;K(a) — 1]
more densely.

Find the typical density of filling the segment [0; K(a) — 1] asymptotical-
ly for large vectors a. The conjectured behavior of the density p(N) at a point

N < K(a) is .
™= (z)

Such a distribution would immediately imply that the semigroup S(a) occupies
1 /n-th of the segment [0;K(a)— 1]:

K
/0 (N/K)" 1dN =K /n

(the triangle fills one half of the rectangle, the parabolic triangle fills one third,
and so on).

1999-11. Consider the density of the semigroup S{a) with multiplicities taken
into account (each point is counted as many times as it has representations in the
form (k,a) with k € Z").

Find this density P(N) asymptotically for large vectors a. The conjecture
is that P(N) ~ N"~! fot all N (rather than only for N < K(a)). Note that, for n =
2, both densities (taking and not taking account of multiplicities) asymptotically
coincide for N < K(a). It is not clear whether such a coincidence takes place for
n> 3.

1999-12. Complexify the group Z of integers employing the fact that Z is a braid
group for two threads and, simultaneously, a dyed braid group for two threads.
The conjectured alternatives are Z and 7.*.

1999-13. Reflection groups and oscillatory integrals. Consider the oscillatory
integral

e f dFEN Mgy dx,  F: (R xR™0) — (R,0), h— 0,
Rn
where @ : R” — R is a smooth function concentrated in a sufficiently small neigh-

borhood of the origin. The singularity index B of a singularity of the func-
tion F{-,0) at 0 is the infimum of the numbers 7y such that

(B, )| < C(@)|h|2"
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at all sufficiently small |A| under an arbitrary deformation of F (the value § — % is
then called the oscillation index).
For simple singularities, the singularity index equals

1 1
== — = 1
where N is the Coxeter number of the corresponding Coxeter group (which is
a finite irreducible group generated by reflections in R"); see ARNOLD V.I.
Remarks on the stationary phase method and Coxeter numbers. Russian Math.

Surveys, 1973, 28(5), 19-48:

Singularity Ay Dy Es | E7 | Eg
B n—1 n—2 51417
2(m+1) [ 2(n=1) | 12| 9 | 15

N w+1 [ 2(u—1) 12|18 30

Formula (1) is also valid for boundary singularities (recall that the Coxeter number
of By, equals 2).

Problem: Construct a theory of oscillatory integrals and find a similar
formula for the remaining (noncrystallographic) Coxeter groups Fy, G,, Hz, Hy,
and I>(p) (whose Coxeter numbers are 12, 6, 10, 30, and p, respectively).

1999-14. Consider a family of smooth surfaces z = f;(x,y) in R*. Suppose that
the surface corresponding to ¢ = 0 is convex and, at some ¢ = t, > 0, a hyperbol-
ic region arises. In the computer experiment performed by A. Ortiz-Rodriguez,
the line formed by the inflection points of the asymptotic curves in the hyperbolic
region (facnodal line) at small r — ¢, > 0 had the shape of the figure eight tangent to
the boundary of the hyperbolic region at two singular points. Construct a rigorous
theory of such figures eight.

1999-15. Products of matrices can be calculated by Strassen’s fast matrix mul-
tiplication formula (for example, multiplying two 2 x 2 matrices by this formula

involves 7 rather than 8 multiplications). How is this formula related to the trinity
R-C-H?
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1999-16. On the plane R?, consider a configuration of n curves diffeomorphic to
straight lines. It is assumed that no two curves intersect at more than 1 point, and
that all intersections of the curves are transversal.

What configurations of curves are realized by straight lines? Starting from
what number #n of curves do deviations occur?

1999-17. Definition. The plane curve {x,y | x 2+ y~2 = 1} is called an anticir-
cle.

Theorem 1. The curve projectively dual to the anticircle is the astroid
{p,q| P*P+4**=1}.
Theorem 2. The set of normals to an ellipse 1s the anticircle.

Question 1. Is there an astroid among the equidistant curves of an el-
lipse? According to F. Aicardi, among the equidistant curves of an ellipse there
are no curves orthogonally equivalent to the astroid. Furthermore, according to
M. E. Kazarian and R. Uribe, there are no curves either projectively or affinely
equivalent to the astroid!. Moreover, they proved the following: consider the
affine transformation sending the four cusps of the equidistant curve to the four
verticies of a fixed square. In the family obtained this way there is exactly one
curve with the symmetry of a square. This only “candidate” tends to the astroid
as the eccentricity of the ellipse tends to zero.

Question 2. Are there multidimensional analogues of the anticircle and the
astroid?

Question 3. Move the tangents to the ellipse along the normals at dis-
tance s. What are the properties of the resulting curve in the dual plane? According
to F Aicardi, it has no cuspidal points.

2000-1 (A.Ortiz-Rodriguez). How many parabolic curves (closed curves or all
the curves—these are two different questions) can lie on the graph of a real poly-
nomial of degree D in two variables? This is unknown even for D = 4 (is it possible
that there are 4 closed components?).

! In the Russian edition of this book, the contrary was affirmed here, which was an error.
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2000-2 (A. Ortiz-Rodriguez). How many parabolic curves can lie on a projective
algebraic surface of degree D in RP?: even the asymptotics for large D is of interest
(the coefficients at D? in the examples I know and in the known upper estimate
differ by a factor of 20).

2000-3. Consider the space of hyperbolic [with the second differential of sig-
nature (4,—) everywhere except at the origin] homogeneous polynomials of de-
gree D in two real variables. How many connected components does this space
consist of? (For D = 3 or 4 there is only one component, for D = 6 there are at
least two components;, the conjectural answer grows probably with a linear rate as
D increases, 1. €., the number of the components is of the order of D for D large.)

2000-4. Consider a generic collection of n straight lines in RP?. How much does
the number of topological classes of such collections differ from the number of
topological types of collections of » noncontractible circles embedded generically
in RP??

Similar questions are not trivial even for the affine plane, both in the case
of embeddings of affine straight lines and in the case of circles—in the presence of
a fixed number of intersections as well as even without intersections.

Of course, the question makes sense for straight lines in the three-dimen-
sional space too, provided that the complexity of topological knotting of the curve
configurations to be compared is bounded above.

2000-5. The observers assert that the number of the eruptions of the volcano
of Piton de Ia Fournaise with the emission of volume less than V grows like
V—3/2 as V decreases [LAHAIE F., GRASSO J. -R., MARCENAC P., GIROUX S.
Modélisation de la dynamique auto-organisée des €ruptions volcaniques: applica-
tion au comportement du Piton de la Fournaise, Réunion. C. R. Acad. Sci. Paris,
Sér. 11a Sci. Terre Planetes, 1996, 323(7), 569-574]. Are there reasonable grounds
for this scaling law, similarly to the turbulence laws?

2000-6. The observers assert that the metabolic rate in similar organisms (such
as men of different stature) is proportional to the 3 /4 power of the mass (rather
than to the 2/3 power, as the ratio of the reaction surface area to the reaction
volume suggests). Are there reasonable explanations for such a fractal behavior
WEST G.B., BROWN J. H., ENQUIST B.J. A general model for the origin of
allometric scaling laws in biology. Science, 1997, 276(5309), 122-126]?
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2000-7. There are observations that the number of the species (of animals, in-
sects, birds, ... ) on an island of area S is proportional to S/ whereas the number
of the cell types in an organism with the genome of N genes grows with N like
N1/2. How can one explain these exponents? Compare with the Kolmogorov law,
according to which the radius of the minimal but still typical brain or comput-
er of N elements grows like N'/2 (rather than like N'/3, as the volume argument
suggests).

2000-8. Let a mapping of a complex projective space (or vector space) onto itself
send all the complex subspaces to complex subspaces. Are there such transforma-
tions other than complex projective ones (linear ones) and their products with the
complex conjugation?

There are no other diffeomorphisms, but I do not know the answer for the
case of homeomorphisms (hopefully, there are no other homeomorphisms as well).
One may ask the same question even for the set-theoretic bijections (which are not
forced to be homeomorphisms).

2000-9. Let ' < R? be a real algebraic plane curve and g: R> — R be a polyno-
mial. To this pair, assign the caustic which is a curve C in another plane equipped
with orthonormal coordinates (A, B). The caustic consists of the points (A, B) for
which the restriction of the function

Gap=g+Ax+By

(x and y being the coordinates in R?) to the curve I” possesses a degenerate critical
point. For a nonsmooth curve I" given by the equation f(x,y) = 0, the critical
points are defined as the zeros of the derivative VG, while the degenerate critical
points are the zeros of both VG and the second derivative V2G; here V is the
Hamiltonian vector field

0 d
f)’a "fx@-

If T is a circle (x* + y* = 1) then the caustic has at least 4 cusps, and its
alternated length (the sum of the lengths of the segments between the cusps with
alternating signs) vanishes. This follows from the Sturm—Hurwitz theorem which
states that the number of zeros of the sum of a real Fourier series

F(t) =Y [ancos(nt)+b,sin(nt)]

n>k
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is at least the number of zeros of the lowest harmonics entering the series with a
nonzero coefficient (1. e., at least 2k 4 2 zeros over the period). For instance, if the
integral of F vanishes (k = () then there are at least two zeros (moreover, these
zeros are the critical points of the primitive of F). This Sturm theorem proved
by Hurwitz is a generalization of the Morse inequality (for the circle), because
the function F in the theorem can be viewed as the image of a (primitive in the
extended sense) periodic function H under a differential operator of degree 2k + 1:

F=LH

where

L=0(3*+1)(0*+4)---(3*+k*), 9= (d/ds).

Thus, one can regard the zeros of the function F as generalized critical points of
the “potential” H: S' — R.

The problem is to carry over the Sturm—Hurwitz theorem (and the state-
ments on the properties of the caustic) to the case of algebraic curves I" other than
a circle. How many singular points of the caustic are inevitable for curves I of a
given genus? This question arises even for singular curves I of genus zero, e. g.,
for the degenerate elliptic curve y* = x> + x°.

2000-10. Consider a controlled dynamical system x = v(x, #) on a compact phase
space (x € M) with a compact manifold of the values of the controlling parameter u.
Let f: M — R be a smooth “goal function.”

Explore the phase transitions of the controls optimal on the average (i.e.,
those maximizing the temporal mean

_] —
Jim 2 [ 7o)

—either for the fixed initial point x(0) or while maximizing over this parameter
as well).

A phase transition here 1s defined as a nonsmooth dependence (of both
the optimal strategy and the attained maximal value of the mean) on additional
parameters on which the initial data of the problem (i. e., the controlled system v
and the goal function f) depend smoothly.

Such nontrivial phase transitions are encountered even in the simplest one-
dimensional case where M =S! and u € S'.
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2000-11. Study the phase transitions of the maximal mean value f[p] of a smooth
goal function f: M — R over the choices of the mass distribution p dx (with den-
sity p with respect to the Riemannian volume dx) on M, under the condition that
the density is bounded above and below by given positive smooth functions:

0<r(x) <p(x) SR(x) <oo

on M. Here the mean value is defined by the formula

o= ([ roas) /([ pax).

2000-12. Given an integer matrix A of order three with determinant 1 [A &€
SL(3,7Z)], construct three eigenplanes assuming that all the eigenvalues are real,
positive, and irrational. The integer points in one of the octants bounded by these
three planes constitute a commutative semigroup in R* while their convex hull is
bounded by an infinite polyhedral surface whose vertices are integer (this surface
is called the sail of the corresponding cubic irrational numbers).

The symmetry group of the sail in SL(3,Z) has been proved to be Z2, so
that the quotient of the sail by the action of these symmetries turns out to be a
two-torus divided into the images of the faces of the sail under the factorization
(moreover, on each face that is a convex integer polygon, there were integer points
which define distinguished points on the torus as well).

The problem is to calculate explicitly (e. g., using a computer and perhaps
the data on cubic irrationalities published by B. N. Delone, D. K. Faddeev, and oth-
ers) these torus triangulations with the images of the integer points upon them—

e. g., for the first hundred of not so large matrices. The simplest example is the

. (321 » : : e :
matrix (% 21 ) of the “three-dimensional golden section,” the conventional golden

section corresponds to the matrix (7 1)."

The interest of this “experimental” activity is due to the hope of noticing, in
the result tables, some regularities which can become theorems in the sequel—for
instance, on the statistics of such triangulation properties as the amount of trian-
gular faces and other faces, the proportions of the integer lengths of the edges,
those of the numbers of the edges with a common vertex, and so on. Then one

I' The greater of the eigenvalues of this 2 x 2 matrix is ¢ +2, where ¢ = (\/5 — I) /2 is the golden
section number.
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would be able to compare such statistics with analogous statistics for other trian-
gulations, e. g., for the sails of random octants or for the convex hulls of the sets of
all the integer points in the domains bounded by random smooth surfaces, even by
large spheres or ellipsoids. One may also compare the results with the partitions
of the plane into the “Voronoi polygons” of random (arbitrary or integer) points: a
Voronoi polygon of such a system of points is constituted by all the points on the
plane for which the nearest point of the system is fixed.

By the way, while averaging in this problem, one can count the contribu-
tions of different polygons to the mean either with equal weights (which leads to an
unjustifiably large contribution of small polygons since there are plenty of them)
or with weights proportional to the polygon areas (which seems more reasonable
to me).

Moreover, besides the distributions of the areas, the perimeter lengths, and
the numbers of the vertices of the polygons (or the numbers of the sail edges with
a common vertex), their joint distributions and correlations are also of interest, as
well as the distributions of dimensionless parameters, €. g., the ratio of the area to
the perimeter length squared (and the correlation between this ratio and the number
of the vertices of the polygon).

2001-1 (A. Ortiz-Rodriguez). Given a real polynomial f in two variables x and y,
denote by P(f) the set of parabolic points on the surface {z = f(x,y)}, i.e., the
zero set of the Hessian H|[f] = fu fyy — fxzy. Determine the maximal number of

a) compact connected components,

b) all the connected components
of the set P(f) over all the polynomials f of given degree d. How can these
connected components be mutually arranged? The first case where the answer is
unknown is d = 4.

The Hessian H|f] of a polynomial f of degree d is a polynomial of degree
< m = 2d — 4. The Harnack inequality ensures that the parabolic set P(f) has at
most N compact connected components, where

N= (”"”1)2(””"'2) +1=(d~3)(2d~5)+1.
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For general polynomials of degree 2d — 4, this estimate is attained. However, it is
not clear whether this estimate is attained for polynomials of degree 2d — 4 that
are Hessians. The problem is the simplest case of Hessian topology.

There are examples of polynomials f of degree d for which the number of
compact connected components of P(f) is at least

(d—1)(d—2)
2 :

So, for d large, the maximal number of compact connected components of P(f)
lies asymptotically between d*/2 and 2d*>. What is the true asymptotic of this
number?

Similar questions on the parabolic curves are also open for such surfaces
in R? as the graphs of rational functions and for the graphs of the odd degree roots
of real polynomials in two variables, as well as for the graphs of other single-
valued real algebraic functions of a fixed degree d.

2001-2 (A. Ortiz-Rodriguez). Given a smooth algebraic surface M C RP?, denote
by P(M) the set of parabolic points on M. Determine the maximal number of

a) connected components of the set P(M) diffeomorphic to st

b) all the connected components of the set P(M)
over all the smooth surfaces M of given degree d. How can these connected com-
ponents be mutually arranged?

This problem is a generalization of the previous one. It is known that the
number of connected components of P(M) diffeomorphic to S! is at most

10d° — 28d% +4d — 3.

On the other hand, there are examples of surfaces M of degree d for which the
number of connected components of P(M) diffeomorphic to S! is at least
d(d—1)(d—2)
5 :

So, for d large, the maximal number of connected components of P(M) diffeomor-
phic to S! lies asymptotically between d° /2 and 10d°. What is the true asymptotic
behavior of this number?

2001-3. Let D be areal number and (7, @) polar coordinates in the real plane. De-
note by Hyp(D) the set of smooth functions F : S! — R such that the homogeneous
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function f(r, @) = r’ F (@) of degree D is hyperbolic, i. e., its second quadratic form
d*f is of signature (+,—) everywhere for r > 0.

For D > 0 integer, f is a homogeneous polynomial of degree D in x =
rcosQ, y = rsin@ if and only if F is a trigonometric polynomial of degree D and
F(o+m) = (-1)"F(¢).

Determine the connected components a) of the set Hyp(D) b) of the subset
Hypp, (D) of Hyp(D) corresponding to f polynomial (for D > O integer).

The set Hypp,(4) is connected (V.1. Arnold, F. Aicardi), while the set
Hypp,(6) consists of at least two connected components (ARNOLD V.1. Astroidal
geometry of hypocycloids and the Hessian topology of hyperbolic polynomials.
Russian Math. Surveys, 2001, 56(6), 1019-1083; Moscow: Moscow Center for
Continuous Mathematical Education Press, 2001 (in Russian)). Conjecturally, the
number of connected components of Hypp, (D) grows like const-D as D — .
The set Hyp(D) of smooth functions has infinitely many connected components.
In the polynomial case, even the number of connected components of the subset
Hypp, (D) is unknown, already for D = 6.

2001-4. Let g:S! — R be a smooth function. Its caustic is by definition the plane
curve

C={(AB)¢c R? ] the function ¢ — g(¢) + A cos ¢ + Bsin¢ is non-Morse }

(see ARNOLD V.I. Astroidal geometry of hypocycloids and the Hessian topolo-
gy of hyperbolic polynomials. Russian Math. Surveys, 2001, 56(6), 1019-1083;
Moscow: Moscow Center for Continuous Mathematical Education Press, 2001 (in
Russian)). Recall that G: S! — R is said to be non-Morse if there exists a point
¢ € S! such that G'(¢) = G (¢) = 0. For instance, for g(@) = cos(2¢) the caustic C
Is the astroid

A=—4cos’d, B=4sin°d (peSh).

In this parametric equation of C, ¢ is just the point where both the first and second
derivatives of cos(2Q) + Acos ¢+ BsinQ vanish.

What curves on R? are the caustics of periodic functions? That C is a
caustic imposes some restrictions on the curve C:

1. A caustic has at least 4 cusps.

2. The number of cusps is even.

3. The alternated length of a caustic (we change sign after each cusp)
LS zero.
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4. Through any point of the plane, there pass at least two tangents to the
caustic.
5. A caustic possesses no inflection points.

One can also show that the caustic of a trigonometric polynomial is an
algebraic curve of genus zero (see the paper cited above).

The problem is to describe the set of restrictions complete in the following
sense: each curve satisfying those restrictions is a caustic.

This problem can be generalized in several directions. First, one may con-
sider the so-called hypercaustic in R, i.e., the curve

C= {(Al,...,An,Bl,...,Bn) e R* | the function
n
G:.p— g(0 Z [Ak cos(kQ) + By sm(k(p)] has a critical point ¢

where the derivatives G = G = ... = G =0 all vanish}.

Second, instead of the circle S! and trigonometric polynomials

E [Agcos(k@) + By sin(k9)],
k

one can consider respectively an arbitrary curve I' C R? and polynomials on R>
restricted to I

Apart from that, it 1s also possible to consider exact Lagrangian subman-
ifolds in 7*S! in place of functions (a closed curve L C T*S! is called an exact
Lagrangian submanifold if the difference between L and the zero section is the
boundary of a chain of area zero).

2001-5. Set
yan=1 — {(Al, ...,An,B1,...,B,) € R*" | the trigonometric polynomial

cos[{n+1)¢ Z [Agcos(k@) + Bysin(kg)] is non—Morse}. (1)

The discriminant ¥ divides R** = {(Ay,...,A,,B1,...,B,)} into n+ 1 domains
G, Gy, ..., Gayyo according to the number of critical points of polynomial (1).
Explore the topology and the singularities combinatorics of these domains.
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The domain Gy of trigonometric M-polynomials (1) (in the terminology
of 1. G. Petrovskii') was examined in the paper ARNOLD V.I. Topological clas-
sification of real trigonometric polynomials and cyclic serpents polyhedron. In:
The Arnold-Gelfand Mathematical Seminars: Geometry and Singularity Theo-
ry. Editors: V.1. Arnold, I. M. Gelfand, V. S. Retakh and M. Smirnov. Boston, MA:
Birkhiuser, 1997, 101-106; the Russian translation in: Vladimir Igorevich Arnold.
Selecta—60. Moscow: PHASIS, 1997, 619-625. This particular domain has a con-
vex polyhedral model (simply a square for n = 1). It is conjectured that all these
domains have polyhedral models in terms of the affine Coxeter group mirrors, sim-
ilar to the descriptions of the swallowtails pyramids polyhedral models in terms of
the Springer cones decompositions into the Weyl chambers for the linear Coxeter
group case. But this conjecture is not confirmed yet even for small values of n.

2001-6. Leth: R, — R, be a smooth function, #(R) > 0 for R > 0 and #(0) = 0.
Consider a curve F on R? with a semicubic cusp O. Denote by £p the part of the
normal to F' at point P where F is smooth containing the center of curvature. Let
Rp be the radius of curvature of F' at P. Let I1p be the parabola with vertex P and
axis £p whose radius of curvature at the vertex is equal to A(Rp).

Study the envelope of the family of the parabolas {I1p}. If F is an astroid
and h(R) = %R, then the family {I1p} has a smooth envelope which is tangent to F
at cusp O. Does the family of the parabolas {IIp} possess a smooth envelope for
other curves F (for, possibly, other functions k)? If the envelope is smooth at O, it
Is tangent to F there.

Similar problems are also interesting for the families of generic smooth
curves instead of the parabolas (of curves having the same properties of the tan-
gency to F' and of the curvature radius at the tangency points).

2002-1. Let f: R? — R be a polynomial of degree D. Find the maximal number
of connected components and the maximal number of closed components of the
parabolic curve Par(f) of its graph (where f, fyy = xzy):

bo(Par(f)) =?, by(Par(f)) = 2.
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Even for D = 4, it is not known whether by attains the value 4, and the
constants C in the lower and the upper bounds for large degrees D, by ~ CD?,
differ by a factor of order of 4:

(D—-1)(D—2)/2<b; < (2D-5)(D—3)+]1.

2002-2. Let M C RP® be a smooth algebraic surface of degree D. Find the max-
imal number of connected components of its parabolic line.

The constants C in the lower and the upper bounds CD? differ by a factor
of order of 20:

D(D—1)(D—2)/2< by < 10D* —28D* 44D+ 3.

The lower estimates in problems 2002-1 and 2002-2 mean the existence of sur-
faces with many closed parabolic curves.

2002-3. Let f: S' — R be a smooth function; it is called D-hyperbolic if the
second differential d% f of the homogeneous function f(x,y) = r” F(¢) (where x =
rcos ©, y = rsin®) is hyperbolic (has signature (+,—)) everywhere in R?\ {0}.
Find the connected components of the space of D-hyperbolic functions: is
the index (equal to the number of rotations of the cross d°f = 0 when the point
(x,y) makes one revolution around the origin) the unique invariant of the connected

component? The set of the values attained by the index is infinite and unbounded
below (but bounded above).

2002-4. For the polynomial ca